K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1

a

 loading...

b) Xét phương trình hoành độ giao điểm của (P) và (d'):

\(x^2=x-2m+1\)

\(\Leftrightarrow x^2-x+2m-1=0\)

\(\Delta=\left(-1\right)^2-4.1.\left(2m-1\right)=5-8m\)

Để (d') cắt (P) tại 2 điểm phân biệt: \(\Delta>0\Leftrightarrow5>8m\Leftrightarrow m< \dfrac{5}{8}\)

Theo định lí Vi-et:

\(\left\{{}\begin{matrix}x_1+x_2=1\\x_1.x_2=2m-1\end{matrix}\right.\)

Theo bài: \(x_1^2+x_2^2=7\)

\(\Leftrightarrow x_1^2+2x_1x_2+x_2^2-2x_1x_2=7\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=7\)

\(\Leftrightarrow1^2-2\left(2m-1\right)=7\)

\(\Leftrightarrow1-4m+2=7\)

\(\Leftrightarrow-4m=4\Leftrightarrow m=-1\left(tmm< \dfrac{5}{8}\right)\)

Vậy m = -1 là giá trị cần tìm

 

9 tháng 1

a) 

b) Đường thẳng (d') cắt (P) ta có phương trình hoành độ giao điểm là:

\(x^2=x-2m+1\)

\(\Leftrightarrow x^2-x+2m-1=0\)

\(\Delta=\left(-1\right)^2-4\cdot1\cdot\left(2m-1\right)=1-8m+4=-8m+5\)

\(\Leftrightarrow\left[{}\begin{matrix}x_1=\dfrac{1+\sqrt{5-8m}}{2}\\x_2=\dfrac{1-\sqrt{5-8m}}{2}\end{matrix}\right.\left(đk:m\le\dfrac{5}{8}\right)\)

Mà: \(x^2_1+x^2_2=7\)

\(\Leftrightarrow\left(\dfrac{1+\sqrt{5-8m}}{2}\right)^2+\left(\dfrac{1-\sqrt{5-8m}}{2}\right)^2=7\)

\(\Leftrightarrow\dfrac{1+2\sqrt{5-8m}+5-8m}{4}+\dfrac{1-2\sqrt{5-8m}+5-8m}{4}=7\)

\(\Leftrightarrow\dfrac{6+2\sqrt{5-8m}-8m+6-2\sqrt{5-8m}-8m}{4}=7\)

\(\Leftrightarrow12-16m=28\)

\(\Leftrightarrow-16m=16\)

\(\Leftrightarrow m=-1\left(tm\right)\)

Vậy: .... 

b: Để (d)//y=-3x+2 thì m-1=-3

=>m=-2

c:

PTHĐGĐ là:

(m-1)x-4=x-7

=>(m-2)x=-3

Để hai đường cắt nhau tại một điểm nằm bên trái trục tung thì m-1<>1 và -3/(m-2)<0

=>m<>2 và m-2>0

=>m>2

20 tháng 11 2016

a/ Hai hàm số có đồ thị // với nhau khi

\(\hept{\begin{cases}m-2=1\\3\ne0\end{cases}}\Leftrightarrow m=3\)

b/ Tọa độ giao điểm 2 đường thẳng là nghiệm của hệ

\(\hept{\begin{cases}y=x+3\\y=2x+1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=5\end{cases}}\)

c/ Gọi điểm mà đường thẳng luôn đi qua là M(a,b) ta thế vào hàm số được

\(b=ma+3\)

\(\Leftrightarrow ma+3-b=0\)

Để phương trình này không phụ thuôc m thì

\(\hept{\begin{cases}a=0\\3-b=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=0\\b=3\end{cases}}\)

Tọa độ điểm cần tìm là M(0, 3)

20 tháng 11 2016

d/ Ta có khoản cách từ O(0,0) tới (d) là 1

\(\Rightarrow=\frac{\left|0-0m-3\right|}{\sqrt{1^2+m^2}}=\frac{3}{\sqrt{1+m^2}}=1\)

\(\Leftrightarrow\sqrt{1+m^2}=3\)

\(\Leftrightarrow m^2=8\)

\(\Leftrightarrow\orbr{\begin{cases}m=2\sqrt{2}\\m=-2\sqrt{2}\end{cases}}\)

5 tháng 12 2021

a, Thay x = -2 => y = -2 + 4 = 2 => A(-2;2) 

(d) cắt y = x + 4 tại A(-2;2) <=> 2 = -2 ( m + 1 ) - 2 

<=> -2m - 2 - 2 = 2 <=> -2m = 6 <=> m = -3 

Vậy (d) : y = -2x - 2 

b, bạn tự vẽ nhé 

c, Cho x = 0 => y = -2 

=> (d) cắt trục Oy tại A(0;-2) => OA = | -2 | = 2 

Cho y = 0 => x = -1 

=> (d) cắt trục Ox tại B(-1;0) => OB = | -1 | = 1 

Ta có : \(S_{OAB}=\frac{1}{2}.OA.OB=\frac{1}{2}.2.1=1\)( dvdt ) 

5 tháng 12 2021

Đặt:  (d):  y = (m+5)x + 2m - 10

Để y là hàm số bậc nhất thì:  m + 5 # 0    <=>   m # -5

Để y là hàm số đồng biến thì: m + 5 > 0  <=>  m > -5

(d) đi qua A(2,3) nên ta có:

3 = (m+5).2 + 2m - 10

<=>  2m + 10 + 2m - 10 = 3

<=>  4m = 3

<=> m = 3/4

(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:

9 = (m+5).0 + 2m - 10

<=> 2m - 10 = 9

<=>  2m = 19

<=> m = 19/2

(d) đi qua điểm 10 trên trục hoành nên ta có:

0 = (m+5).10 + 2m - 10

<=> 10m + 50 + 2m - 10 = 0

<=>  12m = -40

<=> m = -10/3

(d) // y = 2x - 1  nên ta có:

\hept{m+5=22m−10≠−1\hept{m+5=22m−10≠−1   <=>   \hept{m=−3m≠92\hept{m=−3m≠92  <=>  m=−3

Giả sử (d) luôn đi qua điểm cố định M(x0; y0)

Ta có:  y0=(m+5)x0+2m−10y0=(m+5)x0+2m−10

<=>  mx0+5x0+2m−10−y0=0mx0+5x0+2m−10−y0=0

<=>  m(xo+2)+5x0−y0−10=0m(xo+2)+5x0−y0−10=0

Để M cố định thì:  \hept{x0+2=05x0−y0−10=0\hept{x0+2=05x0−y0−10=0   <=>   \hept{x0=−2y0=−20\hept{x0=−2y0=−20

Vậy...

 

a: loading...

 

 

4 tháng 12 2021

\(a,\Leftrightarrow1+m=-2\Leftrightarrow m=-3\\ \Leftrightarrow y=x-3\\ \text{Thay }x=2;y=5\Leftrightarrow5=2-3=-1\left(\text{vô lí}\right)\\ \Leftrightarrow E\notinđths\\ b,\text{PT giao Ox và Oy: }\left\{{}\begin{matrix}y=0\Rightarrow x=-m\Rightarrow E\left(-m;0\right)\Rightarrow OE=\left|m\right|\\x=0\Rightarrow y=m\Rightarrow F\left(0;m\right)\Rightarrow OF=\left|m\right|\end{matrix}\right.\)

Gọi H là chân đường cao từ O đến EF

Áp dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{OE^2}+\dfrac{1}{OF^2}=\dfrac{1}{2m^2}=\dfrac{1}{3^2}=\dfrac{1}{9}\)

\(\Leftrightarrow m^2=\dfrac{9}{2}\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{3}{\sqrt{2}}\\m=-\dfrac{3}{\sqrt{2}}\end{matrix}\right.\)

a: Thay x=4 và y=1 vào y=(m+1)x-3, ta được:

4(m+1)-3=1

=>4m+4-3=1

=>4m+1=1

hay m=0

b: Để hai đường vuông góc thì 5(m+1)=-1

=>m+1=-1/5

hay m=-6/5

c: Thay x=2 vào y=3x-1, ta được:

\(y=3\cdot2-1=5\)

Thay x=2 và y=5 vào (d), ta được:

2(m+1)-3=5

=>2(m+1)=8

=>m+1=4

hay m=3

b: Thay x=1 vào y=x+1, ta đc:

y=1+1=2

Thay x=1 và y=2 vào (d), ta được;

m+1-2=2

=>m+1=2

=>m=1

c: Tọa độ A là:

y=0 và (m+1)x-2=0

=>x=2/m+1 và y=0

=>OA=2/|m+1|

Tọa độ B là:

x=0 và y=-2

=>OB=2

Để góc OAB=45 độ thì OA=OB

=>|m+1|=1

=>m=0 hoặc m=-2