Phân tích đa thức:
c; ab ( a+b ) + bc ( b+c ) + ac ( a+c ) + 3abc
d; a ( b2 - c2 ) + b ( c2 - a2 ) + c ( a2 - b2 )
e; x2 - 7
f; ( x+1) (x+3) (x+5) (x+7) + 15 ( gợi ý: đặt ẩn phụ )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để đa thức \(C\left(x\right),D\left(x\right)\) có nghiệm thì \(C\left(x\right)=0,D\left(x\right)=0\)
Do đó : \(C\left(x\right)=\left(\dfrac{1}{2}\right)^3-2x=0\)
\(\Rightarrow\dfrac{1}{8}-2x=0\)
\(\Rightarrow2x=\dfrac{1}{8}\)
\(\Rightarrow x=\dfrac{1}{8}:2=\dfrac{1}{16}\)
Vậy \(x=\dfrac{1}{16}\) là nghiệm của đa thức \(C\left(x\right)\)
\(D\left(x\right)=2x^2-5x-7=0\)
\(\Rightarrow2x^2+2x-7x-7=0\)
\(\Rightarrow2x\left(x+1\right)-7\left(x+1\right)=0\)
\(\Rightarrow\left(x+1\right)\left(2x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+1=0\\2x-7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{7}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{-1;\dfrac{7}{2}\right\}\) là nghiệm của đa thức \(D\left(x\right)\)
\(C=2x^3+x^2+x-1=0\\ \Rightarrow x^3+x^3+x^2+x-1=0\\ \Rightarrow x^3+\left(x^3+x^2\right)-\left(x+1\right)=0\\ \Rightarrow x^3+x^2\left(x+1\right)-\left(x+1\right)=0\\ \Rightarrow x^3+\left(x+1\right)\left(x^2-1\right)=0\\ \Rightarrow\left\{{}\begin{matrix}x^3=0\\\left(x+1\right)\left(x^2-1\right)=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=0\\\left[{}\begin{matrix}x+1=0\\x^2-1=0\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=0\\\left[{}\begin{matrix}x=-1\\x=\sqrt{1}\end{matrix}\right.\end{matrix}\right.\)
Vậy đa thức trên có nghiệm là \(\left\{{}\begin{matrix}x=0\\\left[{}\begin{matrix}x=-1\\x=\sqrt{1}\end{matrix}\right.\end{matrix}\right.\)
\(C=5x^3y^2-4x^3y^2+3x^2y^3+\dfrac{1}{2}x^2y^3+\dfrac{1}{3}x^4y^5-3x^4y^5-\dfrac{1}{7}\)
\(=x^3y^2+\dfrac{7}{2}x^2y^3-\dfrac{8}{3}x^4y^5-\dfrac{1}{7}\)
\(C=\left(x^2+4y^2+25-4xy+10x-20y\right)+\left(y^2-2y+1\right)+2\)
\(C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
\(C_{min}=2\) khi \(\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)
C = -x^2 - 2x + 3 = - ( x^2 + 2x - 3 )
= - ( x^2 + 2x + 1 - 4 ) = -( x + 1 )^2 + 4 =< 4
Dấu ''='' xảy ra khi x = -1
Vậy GTLN C là 4 khi x = -1
D = -x^2 - 3x + 7 = - ( x^2 + 3x - 7 )
=- ( x^2 + 2.3/2.x+ 9 /4 - 37 / 4 )
= - ( x + 3/2 )^2 + 37/4 =< 37/4
Dấu ''='' xảy ra khi x = -3/2
Vậy GTLN D là 37/4 khi x = -3/2
1:
a: 5x(x^2-2x+1)
=5x*x^2-5x*2x+5x*1
=5x^3-10x^2+5x
b: \(M\left(x\right)+N\left(x\right)\)
=8x^2-2x+7+x^2+2x-9
=9x^2-2
c: C(x)=0
=>-3x+9=0
=>-3x=-9
=>x=3
2:
a: Xét ΔAMN và ΔAEP có
AM=AE
góc MAN=góc EAP
AN=AP
=>ΔAMN=ΔAEP
b: ΔAMN=ΔAEP
=>góc AMN=góc AEP
=>MN//EP
mà MN vuông góc MP
nên EP vuông góc MP
c: ΔMPN vuông tại M có MA là trung tuyến
nên MA=1/2NP
Ta có:\(\left|x-2\right|\ge0\)
\(\Rightarrow5.\left|x-2\right|\ge0\)
\(\Rightarrow10-5.\left|x-2\right|\le10\)hay \(C\le10\)
Dấu "=" xảy ra \(\Leftrightarrow\left|x-2\right|=0\Rightarrow x-2=0\Rightarrow x=2\)
Vậy min C=10 khi và chỉ khi x=2
Vì \(3< x< 5\)
\(\Rightarrow x=4\)
Ta có : \(C=x^2-2x-5\)
\(=x^2-2x.1+1^2-1^2-5\)
\(=x^2-2x.1+1-1-5\)
\(=\left(x^2-2x.1+1\right)-1-5\)
\(=\left(x-1\right)^2-6\)
\(\Leftrightarrow\left(x-1\right)^2\ge0\)
\(\Rightarrow\left(x-1\right)^2-6\ge6\)
Vậy C đạt GTNN <=> x=1
a. \(2x^{^2}\left(2x^{^3}-3x+1\right)\)
b. \(\left(4m-25n\right)\left(4m+25n\right)\)
b: \(4m^2-25n^2=\left(2m-5n\right)\left(2m+5n\right)\)
f , (x+1)(x+3)(x+5)(x+7) + 15 = [ (x+1)(x+7) ].[ (x+3)(x+5) ] + 15
= (x² + 7x + x + 7).(x² + 5x + 3x + 15) + 15
= (x² + 8x + 7).(x² + 8x + 15) + 15
= (x² + 8x + 11 - 4)(x² + 8x + 11 + 4) + 15. Đặt x² + 8x + 11 = y (1) ta được.
(t - 4)(t + 4) + 15 = t² - 16 + 15 = t² - 1 = (t+1)(t-1) (2).
Thay (1) vào (2) ta được: đa thức trên được phân tích thành:
(x² + 8x + 11 + 1)(x² + 8x + 11 - 1) = x² + 8x + 12)(x² + 8x + 10).
f , (x+1)(x+3)(x+5)(x+7) + 15 = [ (x+1)(x+7) ].[ (x+3)(x+5) ] + 15
= (x² + 7x + x + 7).(x² + 5x + 3x + 15) + 15
= (x² + 8x + 7).(x² + 8x + 15) + 15
= (x² + 8x + 11 - 4)(x² + 8x + 11 + 4) + 15. Đặt x² + 8x + 11 = y (1) ta được.
(t - 4)(t + 4) + 15 = t² - 16 + 15 = t² - 1 = (t+1)(t-1) (2).
Thay (1) vào (2) ta được: đa thức trên được phân tích thành:
(x² + 8x + 11 + 1)(x² + 8x + 11 - 1) = x² + 8x + 12)(x² + 8x + 10).
Ai trên 10 điểm hỏi đáp thì mình nha mình đang cần gấp chỉ còn 59 điểm là tròn rồi mong các bạn hỗ trợ mình sẽ đền bù xứng đáng