Bài 1: Chứng minh bất đẳng thức:
a) \(a^2+b^2+c^2+\frac{3}{4}\ge-a-b-c\)
b) \(2a^2+2b^2+8\ge2ab+4\left(a+b\right)\)
Bài 2: Cho 3 số dương x,y,z. Chứng minh: \(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge3\)
Bài 3: Cho 3 số dương a,b,c có tổng =1. cminh: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)
Bài 4: Cho \(x,y,z\ge0\)
Chứng minh: \(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8xyz\)
a/ có \(a^2+b^2+c^2+\frac{3}{4}\ge-\left(a+b+c\right)\)
\(\Leftrightarrow a^2+a+\frac{1}{4}+b^2+b+\frac{1}{4}+c^2+c+\frac{1}{4}\ge0\)
\(\Leftrightarrow\left(a+\frac{1}{2}\right)^2+\left(b+\frac{1}{2}\right)^2+\left(c+\frac{1}{2}\right)^2\ge0\) (luôn đúng với mọi a,b,c)
b/ \(2a^2+2b^2+8-2ab+4\left(a+b\right)\ge0\)
\(\Leftrightarrow a^2+4a+4+b^2+4b+4+a^2+2ab+b^2\ge0\)
\(\Leftrightarrow\left(a+2\right)^2+\left(b+2\right)^2+\left(a+b\right)^2\ge0\)(luôn đúng)
bài 2 áp dụng bất đẳng thức cô si cho 3 số dương ta có
\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge3\sqrt[3]{\frac{x}{y}\cdot\frac{y}{z}\cdot\frac{z}{x}}=3\)
bài 3: giả sử \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)
\(\Leftrightarrow\frac{x}{y}+\frac{y}{x}+\frac{x}{z}+\frac{z}{x}+\frac{y}{z}+\frac{z}{y}\ge6\)
áp dụng bất đẳng thức cô si cho 2 số dương ta có
\(\frac{x}{y}+\frac{y}{x}\ge2\)cmtt \(\Rightarrow\frac{x}{y}+\frac{y}{x}+\frac{z}{x}+\frac{x}{z}+\frac{y}{z}+\frac{z}{y}\ge6\)
áp dụng bất đăng thức trên ta đc
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=9\)
bái 4: áp dụng bất đẳng thức cô si cho từng cái, nhân vế theo vế là đc nhé bn