K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 1 2024

I là trung điểm AB \(\Rightarrow\overrightarrow{IB}=\dfrac{1}{2}\overrightarrow{AB}\Rightarrow\overrightarrow{AB}=2\overrightarrow{IB}\)

NV
17 tháng 9 2021

23.

Ta sẽ tìm điểm \(I\left(a;b;c\right)\) sao cho \(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{ID}=\overrightarrow{0}\) (1)

\(\left\{{}\begin{matrix}\overrightarrow{IA}=\left(-2-a;2-b;6-c\right)\\\overrightarrow{IB}=\left(-3-a;1-b;8-c\right)\\\overrightarrow{IC}=\left(-1-a;-b;7-c\right)\\\overrightarrow{ID}=\left(1-a;2-b;3-c\right)\end{matrix}\right.\)

\(\Rightarrow\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{ID}=\left(-5-4a;5-4b;24-4c\right)\)

(1) thỏa mãn khi: \(\left\{{}\begin{matrix}-5-4a=0\\5-4b=0\\24-4c=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\dfrac{5}{4}\\b=\dfrac{5}{4}\\c=6\end{matrix}\right.\)

\(\Rightarrow I\left(-\dfrac{5}{4};\dfrac{5}{4};6\right)\)

Khi đó:

\(T=MA^2+MB^2+MC^2+MD^2=\left(\overrightarrow{MI}+\overrightarrow{IA}\right)^2+\left(\overrightarrow{MI}+\overrightarrow{IB}\right)^2+\left(\overrightarrow{MI}+\overrightarrow{IC}\right)^2+\left(\overrightarrow{MI}+\overrightarrow{ID}\right)^2\)

\(=4MI^2+IA^2+IB^2+IC^2+ID^2+2\overrightarrow{MI}\left(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{ID}\right)\)

\(=4MI^2+IA^2+IB^2+IC^2+ID^2\) (do \(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{ID}=\overrightarrow{0}\))

\(IA^2+IB^2+IC^2+ID^2\) cố định nên \(T_{min}\) khi \(MI_{min}\)

\(\Leftrightarrow M\) trùng I

\(\Rightarrow M\left(-\dfrac{5}{4};\dfrac{5}{4};6\right)\Rightarrow x+y+z=-\dfrac{5}{4}+\dfrac{5}{4}+6=6\)

NV
17 tháng 9 2021

24.

\(a+b=4\Rightarrow b=4-a\)

ABCD là hình chữ nhật \(\Rightarrow\overrightarrow{AB}=\overrightarrow{DC}\)

\(\Rightarrow C\left(a;a;0\right)\)

Tương tự ta có: \(C'\left(a;a;b\right)\)

M là trung điểm CC' \(\Rightarrow M\left(a;a;\dfrac{b}{2}\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{A'B}=\left(a;0;-b\right)=\left(a;0;a-4\right)\\\overrightarrow{A'D}=\left(0;a;-b\right)=\left(0;a;a-4\right)\\\overrightarrow{A'M}=\left(a;a;-\dfrac{b}{2}\right)=\left(a;a;\dfrac{a-4}{2}\right)\end{matrix}\right.\)

Theo công thức tích có hướng:

\(\left[\overrightarrow{A'B};\overrightarrow{A'D}\right]=\left(-a^2+4a;-a^2+4a;a^2\right)\)

\(\Rightarrow V=\dfrac{1}{6}\left|\left[\overrightarrow{A'B};\overrightarrow{A'D}\right].\overrightarrow{A'M}\right|=\dfrac{1}{6}\left|a\left(-a^2+4a\right)+a\left(-a^2+4a\right)+\dfrac{a^2\left(a-4\right)}{2}\right|\)

\(=\dfrac{1}{4}\left|a^3-4a^2\right|=\dfrac{1}{4}\left(4a^2-a^3\right)\)

Xét hàm \(f\left(a\right)=\dfrac{1}{4}\left(4a^2-a^3\right)\) trên \(\left(0;4\right)\)

\(f'\left(a\right)=\dfrac{1}{4}\left(8a-3a^2\right)=0\Rightarrow\left[{}\begin{matrix}a=0\left(loại\right)\\a=\dfrac{8}{3}\end{matrix}\right.\)

\(\Rightarrow f\left(a\right)_{max}=f\left(\dfrac{8}{3}\right)=\dfrac{64}{27}\)

1 tháng 5 2021

1.

undefined

21 tháng 9 2021

Xét tính trạng hình dạng cây:

\(\dfrac{Cao}{Thap}=\dfrac{9+3}{3+1}=\dfrac{3}{1}\)
=> Cao THT so với thấp 

Quy ước gen: A cao.     a thấp

Xét tính trạng màu sắc

\(\dfrac{Đỏ}{vang}=\dfrac{9+3}{3+1}=\dfrac{3}{1}\)
=> đỏ THT so với vàng

Quy ước gen: B đỏ.          b vàng

Vì F2 thu dc tỉ lệ 9:3:3:1

=> tuân theo quy luật phân li độc lập Của Menden 

=> F1 dị hợp 2 cặp giao tử. kiểu gen F1: AaBb

F1 dị hợp 2 cặp giao tử => P thuần chủng

P      Cao,đỏ.       x.    Thấp,vàng

         AABB                 aabb

Gp      AB                    ab

F1:      AaBb( cao,đỏ)

F1 xF1     AaBb( cao,đỏ)  x     AaBb( cao,đỏ)

GF1     AB,Ab,aB ab              AB,Ab,aB,ab

F2:undefined

Kiểu gen: 9A_B_:3A_bb:3aaB_:1aabb

kiểu hình:9cao,đỏ :3 cao,vàng:3 thấp,đỏ:1 thấp,vàng

25 tháng 3 2022

Câu 4.

Có \(N_1>N_2\Rightarrow\)Máy hạ thế.

Hiệu điện thế hai đầu cuộn sơ cấp:

\(\dfrac{U_1}{U_2}=\dfrac{N_1}{N_2}\Rightarrow\dfrac{1500}{250}=\dfrac{U_1}{220}\)

\(\Rightarrow U_1=1320V\)

NV
7 tháng 1 2024

\(A=\left\{1;2;5;10;17\right\}\)

\(\left(x^2-4\right)\left(2x^2-x-1\right)=0\Rightarrow\left[{}\begin{matrix}x^2-4=0\\2x^2-x-1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\pm2\\x=1\\x=-\dfrac{1}{2}\notin Z\end{matrix}\right.\) \(\Rightarrow B=\left\{-2;1;2\right\}\)

\(\Rightarrow A\backslash B=\left\{5;10;17\right\}\)

NV
7 tháng 1 2024

ABC vuông cân \(\Rightarrow\left\{{}\begin{matrix}AC=AB=3\\BC=AB\sqrt{2}=3\sqrt{2}\end{matrix}\right.\)

\(\overrightarrow{BC}.\overrightarrow{CA}=-\overrightarrow{CB}.\overrightarrow{CA}=-BC.AC.cos\left(\overrightarrow{CB};\overrightarrow{CA}\right)\)

\(=-3\sqrt{2}.3.cos45^0=-9\)

13 tháng 12 2023

Bài 11:

\(PTHH:2A+Cl_2\rightarrow2ACl\\TheoĐLBTKL:\\ m_A+m_{Cl_2}=m_{ACl}\\ \Leftrightarrow 9,2+m_{Cl_2}=23,4\\ \Rightarrow m_{Cl_2}=23,4-9,2=14,2\left(g\right)\\ n_{Cl_2}=\dfrac{14,2}{71}=0,2\left(mol\right)\\ n_A=2.0,2=0,4\left(mol\right)\\ M_A=\dfrac{9,2}{0,4}=23\left(\dfrac{g}{mol}\right)\\ \Rightarrow A\left(I\right):Natri\left(Na=23\right)\)

10 tháng 2 2022

Cho mình hỏi sao cái bảng sao hàng thứ nhất điền vào 3 trừ hàng thứ 2 lại 2 trừ 2 cộng v rồi còn hàng thứ 3 nữa 1 cộg 3 trừ

18 tháng 10 2021

Bác mẹ là chỉ cha mẹ
Hai thân vui vầy là cha mẹ vui vẻ, hạnh phúc.
 Mình biết vậy thui mong có ích cho bạn!

18 tháng 10 2021

bạn viết cho mình là mình vui rồi ! Cảm ơn bạn nhé !