K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 1 2024

- Xét với \(p=2\Rightarrow2^p+p^2=8\) ko phải SNT

- Xét với \(p=3\Rightarrow2^p+p^2=17\) là SNT (thỏa mãn)

- Xét với \(p>3\Rightarrow2^p+p^2>3\) đồng thời \(p^2\) chia 3 dư 1 (1)

Đồng thời \(p>3\) nên p lẻ \(\Rightarrow p=2k+1\Rightarrow2^p=2^{2k+1}=2.4^k\)

Mà \(4\equiv1\left(mod3\right)\Rightarrow2.4^k\equiv2\left(mod3\right)\) hay \(2^p\) chia 3 dư 2 (2)

(1);(2) \(\Rightarrow2^p+p^2\) chia hết cho 3 \(\Rightarrow2^p+p^2\) không phải SNT

Vậy \(p=3\) là giá trị duy nhất thỏa mãn yêu cầu

18 tháng 4 2020

p = 2. Vì 2 + 11 = 13 mà 13 là số nguyên tố. Và ngoài số 2 ra, không có số nguyên tố nào là số chẵn mà số 11 khi công với các số lẻ sẽ thành số chẵn.

p = 3; 5; 7; 11; ...( tất cả các số nguyên tố khác 2 )

Xong rùi đó. Chúc bạn học tốt! Nhớ k cho mình nha!

NV
12 tháng 1 2022

1.

\(x^4+4y^4=x^4+4x^2y^2+y^4-4x^2y^2=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)

\(=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)

Do x, y nguyên dương nên số đã cho là SNT khi:

\(x^2-2xy+2y^2=1\Rightarrow\left(x-y\right)^2+y^2=1\)

\(y\in Z^+\Rightarrow y\ge1\Rightarrow\left(x-y\right)^2+y^2\ge1\)

Đẳng thức xảy ra khi và chỉ khi \(x=y=1\)

Thay vào kiểm tra thấy thỏa mãn

2. \(N=n^4+4^n\)

- Với n chẵn hiển nhiên N là hợp số

- Với \(n\) lẻ: \(\Rightarrow n=2k+1\)

\(N=n^4+4^n=n^4+4^{2k+1}=n^4+4.4^{2k}+4n^2.4^k-n^2.4^{k+1}\)

\(=\left(n^2+2.4^k\right)^2-\left(n.2^{k+1}\right)^2=\left(n^2+2.4^k-n.2^{k+1}\right)\left(n^2+2.4^k+n.2^{k+1}\right)\)

Mặt khác:

\(n^2+2.4^k-n.2^{k+1}\ge2\sqrt{2n^2.4^k}-n.2^{k+1}=2\sqrt{2}n.2^k-n.2^{k+1}\)

\(=n.2^{k+1}\left(\sqrt{2}-1\right)\ge2\left(\sqrt{2}-1\right)>1\)

\(\Rightarrow N\) là tích của 2 số dương lớn hơn 1

\(\Rightarrow\) N là hợp số

NV
12 tháng 1 2022

Bài 4 chắc không có cách "đại số" nào (tức là dựa vào lý luận chia hết tổng quát) để giải. Mình nghĩ vậy (có lẽ có, nhưng mình ko biết).

Chắc chỉ sáng lọc và loại trừ theo quy tắc kiểu: do đổi vị trí bất kì đều là SNT nên không thể chứa các chữ số chẵn và chữ số 5, như vậy số đó chỉ có thể chứa các chữ số 1,3,7,9

Nó cũng không thể chỉ chứa các chữ số  3 và 9 (sẽ chia hết cho 3)

Từ đó sàng lọc được các số: 113 (và các số đổi vị trí), 337 (và các số đổi vị trí)

14 tháng 2 2016

 

p>3 thì p^2+2^p=(p^2-1)+(2^p+1) p^2 là số chính phương nên chia 3 dư 1 -> p^2-1 chia hết cho 3 (2^p+1) chia hết cho 3 vì p là số lẻ xong rồi, suy ra p^2+2^p chia hết cho 3 ko là snt ko thõa.  Xét p=3 thõa mãn

16 tháng 2 2016

p không tìm được đâu , 2 mũ mấy cũng không là số nguyên tố đâu

16 tháng 3 2016

chỉ có P=3 

dài lắm

11 tháng 12 2016

p là số nguyên tố 

xét p=2 loại tự làm 

xét p=3 chọn tự làm

xét p=3k+1 hoặc p= 3k+2

p=3k+1=> p^2+8= (3k+1)^2+8= 9k^2+6k+9 chia hết cho 3

p=3k+2=> p^2+8= (3k+2)^2+8= 9k^2+12k+12 chia hết cho 3

nên từ đó suy ra p=3 là thoả đề

28 tháng 11 2016

(+) Với p = 2

=> a = 22 + 8 = 14 ( hợp số )
(+) Với p = 3

=> a = 32+8 = 17 ( số nguên tố )

(+) Với p > 3

Vì p nguyên tố

=> p = 3k+1 ; p = 3k + 2\(\left(k\in N\right)\)

Mặt khác : p2 là số chính phương . Mà p không chia hết cho 3

=> p2 chia 3 dư 1

=> p2=3m+1\(\left(m\in N\right)\)

=> p2+8=3m+1+8=3m+9 ( hợp số )

Vậy p = 3

28 tháng 11 2016

Ta có:

Gía trị của PGía trị của a khi thay P (a= P2+8)Kết quả nhận/loại
212Hợp số-> Loại
317Số nguyên tố-> Nhận
533Hợp số-> Loại
757Hợp số -> Loại
11129Hợp số-> Loại

 

Cứ thử như thế cho đến mãi ta mới chỉ nhận được một giá trị : P=3

=> Vậy: P=3