K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2024

(n-4) chia hết (n-1)

Suy ra : (n-1)-3 chia hết (n-1)

Suy ra : -3 chia hết (n-1)

n-1       1 ; -1 ; 3 ; -3

n          2 ; 0 ; 4 ; -2

 Vậy n thuộc {2;0;4;-2)

3 tháng 1 2024

Ta có:

\(n-4=n-1-3\)

Để \(\left(n-4\right)⋮\left(n-1\right)\) thì \(3⋮\left(n-1\right)\)

\(\Rightarrow n-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)

\(\Rightarrow n\in\left\{-2;0;2;4\right\}\)

29 tháng 12 2015

n  + 3 chia hết choi n + 1

n + 1+  2 chia hết cho n  +1

2 chia hế cho n + 1

n + 1 thuộc U(2) = {-2 ; -1 ; 1 ; 2}

n + 1 = -2 =>? n = -3

n + 1=  -1 => n = -2

n + 1 = 1 => n = 0

n + 1 = 2 => n = 1 

24 tháng 10 2015

Yễn Nguyễn ơi! Giúp mình với!!:

8-3n chia hết cho n+1.

Yễn Nguyễn có làm được ko?

 

6 tháng 8 2016

Câu 1: 

(Đk n € Z) Ta có :n^3+11n=n^3-n+12n=n(n^2-1)+12n=(n-1)n(n... 
vì n là số nguyên nên (n-1)n(n+1) là tích của 3 số nguyên liên tiếp nên phải chia hết cho 6;mà 12 lại chia hết cho 6 =>12n cũng chia hết cho 6. 
Vậy (n-1)n(n+1)+12n chia hết cho 6 => n^3+11n chia hết cho 6 (đpcm) 

Câu 2: Gọi biểu thức trên là a ta có:

 A=mn(m²-n²) 
   = mn(m² - 1 - n² + 1) 
   = mn [(m-1)(m+1) - (n-1)(n+1)] 
   = n(m-1)m(m+1) - m(n-1)n(n+1) 
{n(m-1)m(m+1) chia hết cho 3  (tính 3 số tự nhiên liên tiếp) 
{m(n-1)n(n+1) chia hết cho 3    (tính 3 số tự nhiên liên tiếp) 
=> n(m-1)m(m+1) - m(n-1)n(n+1) chia hết cho 3 
=> A chia hết cho 3 

Câu 3:

 n(n+1)(2n+1) = n(n+1)(n+2+n-1)=n(n+1)(n+2)+(n-1)(n+1)n 
ba số liên tiếp thì chia hết cho 2 ; chia hết cho 3 --> tổng trên chia hết cho 6

Vậy n(n+1)(2n+1) chia hết cho 6

Câu 4: Gọi biểu thức trên là B ta có:

* B=n^2(n^4-1) = n^2(n^2+1)(n^2 - 1) 
= n^2(n^2 - 4 + 5)(n^2 - 1) = n^2(n^2 - 1)(n^2 - 4) + n^2(n^2 - 1).5 
= (n - 2)(n-1).n^2(n+1)(n+2) + n^2(n^2 - 1).5 
(n - 2)(n-1).n^2(n+1)(n+2) chứa tích 5 số liên tiếp chia hết cho 5  và n^2(n^2 - 1).5 cũng chia hết cho 5 
=> B chia hết cho 5 

*B=n^2(n^4-1) = n^2(n^2+1)(n^2 -1) là tích 3 số tự nhiên liên tiếp chia hết cho 3 
=> B chia hết cho 3 

*B=n^2(n^4-1) = n^2(n^2+1)(n^2 -1) = n^2(n^2+1)(n+1)(n-1) 
n chẵn => n^2 chia hết cho 4 => A(n) chia hết cho 4 
n lẻ => n +1 và n -1 là 2 số chẵn => (n+1)(n-1) chia hết cho 4 => A(n) chia hết cho 4 
=> B chia hết cho 4 

Vì: 3,4,5 nguyên tố cùng nhau => Bchia hết cho 3.4.5 = 60

Câu 5: Gọi biểu thức trên là C ta có:

Đặt C = mn(m4-n4) = mn(m2-n2)(m2+n2)=mn(m-n)(m+n)(m2+n2) 
*)Nếu 1 trong 2 số m,n chia hết cho 2 suy ra C chia hết cho 2. 
Nếu k0 thì m,n lẻ suy ra m-n chia hết cho 2 suy ra C chia hết cho 2. 
Vậy C chia hết cho 2 
*)Nếu m,n có 1 số chia hết cho 3 => C chia hết cho 3. 
Nếu k0: +)m,n đồng dư mod 3 => m-n chia hết cho 3 =>C chia hết cho 3 
+)m,n chia 3 dư lần lượt là 1, 2 =>m+n chia hết cho 3 => C chia hết cho 3. 
Vậy C chia hết cho 3. 
*)Nếu m,n có 1 số chia hết cho 5 => C chia hết cho 5 
Nếu k0 +)m,n đồng dư mod 5 =>m-n  chia hết cho 5 
+)m,n có số dư mod 5 là (1,2), (1,3), (1,4), (2,3), (2,4),(3,4) 
Các trường hợp (1,4),(2,3) =>m+n  chia hết cho5 
Còn lại m2+n2 chai hết cho 5 (do 1 số chính phương chia 5 dư 0,1,4 nên bạn có thể tự thử các trường hợp còn lại) 
Vậy C chia hết cho 5. 
Từ kết quả trên => C chia hết cho 30( đpcm). 

1) Ta có: \(2⋮n-3\)

\(\Leftrightarrow n-3\inƯ\left(2\right)\)

\(\Leftrightarrow n-3\in\left\{1;-1;2;-2\right\}\)

hay \(n\in\left\{4;2;5;1\right\}\)

Vậy: \(n\in\left\{4;2;5;1\right\}\)

2) Ta có: \(n+2⋮n-3\)

\(\Leftrightarrow n-3+5⋮n-3\)

mà \(n-3⋮n-3\)

nên \(5⋮n-3\)

\(\Leftrightarrow n-3\inƯ\left(5\right)\)

\(\Leftrightarrow n-3\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{4;2;8;-2\right\}\)

Vậy: \(n\in\left\{4;2;8;-2\right\}\)

4 tháng 2 2021

cảm ơnhaha

13 tháng 2 2017

1)[n-6-n+1]chia hết cho   n  -1

suy ra -5 chia hết cho n-1

đến đây tự giải nhé

các phần sau tương tự 

nhớ bấm đúng cho mình nha

13 tháng 2 2017

bạn ơi nk chưa hiểu rõ 

hay kết bạn rùi giải rõ giùm mk nha

cảm ơn bạn rất nhiều

18 tháng 3 2020

Mình chỉ giúp bạn được những câu này thôi , mình phải đi ngủ , thông cảm ạ :

c ) 38 - 3n chia hết cho n .

Vì 3n chia hết cho n nên 38 chia hết cho n

Suy ra : n thuộc Ư (38) = { 1 ; 2 ; 19 ; 38 }

Vậy n thuộc { 1 ; 2 ; 19 ; 38 }

d ) n + 5 chia hết cho n + 1 .

\(\Rightarrow\)n + 1 + 4 chia hết cho n + 1 .

Mà : n + 1 chia hết cho n + 1 .

\(\Rightarrow\)4 chia hết cho n + 1 .

\(\Rightarrow\)n + 1 \(\in\)Ư (4) = { 1 ; 2 ; 4 }

Xét : 

n + 1 = 1 \(\Rightarrow\)n = 0

n + 1 = 2 \(\Rightarrow\)n = 1

n + 1 = 4 \(\Rightarrow\)n = 3

Vậy n thuộc { 0 ; 1 ; 3 }

29 tháng 7 2017

1) => n thuộc Ư(4)={1,2,4}

Vậy n = {1,2,4}

2) \(\frac{6}{n+1}\)

=> n+1 thuộc Ư(6)={1,2,3,6}

Ta có bảng :

n+11236
n0125

Vậy n={0,1,2,5}

3) =>n thuộc Ư(8)={1,2,4,8}

Vậy n n={1,2,4,8}

4)\(\frac{n+3}{n}=\frac{n}{n}+\frac{3}{n}=1+\frac{3}{n}\)

=> n thuộc Ư(3)={1,3}

Vậy n = {1,3}

5) \(\frac{n+6}{n+1}=\frac{n+1+5}{n+1}=\frac{n+1}{n+1}+\frac{5}{n+1}=1+\frac{5}{n+1}\)

=> n+1 thuộc Ư(5) = {1,5}

Ta có : n+1=1

n = 1-1

n=0

Và n+1=5

n=5-1

n=4 

Vậy n = 4

3 tháng 7 2018

=1 ak banj ! mk k chắc chắn lắm vì mk mới lớp 5 ! thông cảm 

3 tháng 7 2018

=1 nhé

16 tháng 11 2022

1: =>3n-12+17 chia hết cho n-4

=>\(n-4\in\left\{1;-1;17;-17\right\}\)

hay \(n\in\left\{5;3;21;-13\right\}\)

2: =>6n-2+9 chia hết cho 3n-1

=>\(3n-1\in\left\{1;-1;3;-3;9;-9\right\}\)

hay \(n\in\left\{\dfrac{2}{3};0;\dfrac{4}{3};-\dfrac{2}{3};\dfrac{10}{3};-\dfrac{8}{3}\right\}\)

4: =>2n+4-11 chia hết cho n+2

=>\(n+2\in\left\{1;-1;11;-11\right\}\)

hay \(n\in\left\{-1;-3;9;-13\right\}\)

5: =>3n-4 chia hết cho n-3

=>3n-9+5 chia hết cho n-3

=>\(n-3\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{4;2;8;-2\right\}\)

6: =>2n+2-7 chia hết cho n+1

=>\(n+1\in\left\{1;-1;7;-7\right\}\)

hay \(n\in\left\{0;-2;6;-8\right\}\)

17 tháng 1 2016

b.2n-4 chia hết cho n+2<=>2n+4-8 chia hết cho n+2

                                 <=>2(n+2)-8 chia het cho n+2

                                 <=>8 chia hết cho n+2

                                 <=> n+2 thuộc ước của 8

  còn lại tự tính nha

những câu hỏi khác cũng tương tự

tick nha