K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 1 2024

Với mọi a;b ta có: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow2a^2+2b^2\ge a^2+2ab+b^2\)

\(\Leftrightarrow a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\)

Dấu "=" xảy ra khi và chỉ khi \(a=b\)

Áp dụng:

\(A=\left(x+3\right)^4+\left(7-x\right)^4\ge\dfrac{1}{2}\left[\left(x+3\right)^2+\left(7-x\right)^2\right]^2\)

Tiếp tục áp dụng BĐT ban đầu trong 2 số hạng trong ngoặc vuông:

\(\Rightarrow A\ge\dfrac{1}{2}\left[\dfrac{1}{2}\left(x+3+7-x\right)^2\right]^2=1250\)

Dấu "=" xảy ra khi \(x+3=7-x\Rightarrow x=2\)

Vậy \(A_{min}=1250\) khi \(x=2\)

Không tồn tại A max

NV
13 tháng 8 2021

\(A=\left|x-3\right|+\left|5-x\right|+\left|x+2\right|-4\ge\left|x-3\right|+\left|5-x+x+2\right|-4\)

\(A\ge\left|x-3\right|+3\ge3\)

\(A_{min}=3\) khi \(x=3\)

19 tháng 10 2019

TA CO: A\(=x^4-10x^3+25x^2+12\)

\(=x^2\left(x^2-10x+25\right)+12\)

\(=x^2\left(x-5\right)^2+12\)

\(Do\)\(\left(x-5\right)^2\ge0\Rightarrow x^2\left(x-5\right)^2\ge0\)

\(\Rightarrow A\ge12\)

Dau''=''xay ra khi vµ chi khi:

\(\left(x-5\right)^2=0\)

\(\Rightarrow x-5=0\)

\(\Rightarrow x=5\)

Vay MAX A=12 khi x=5

20 tháng 10 2019

còn x bằng 0 nữa nhá

9 tháng 11 2016

giúp mình với các bạn

18 tháng 1 2019

đương 23

tích mình với

ai tích mình

mình tích lại

thanks

14 tháng 2 2019

Tích mình đi mình tích lại

\(A=-\left(x^2-3x-4\right)\)

\(=-\left(x^2-2.x\frac{3}{2}+\frac{9}{4}+\frac{7}{4}\right)\)

\(=-\left(\left(x-\frac{3}{2}\right)+\frac{7}{4}\right)\)

\(=-\frac{7}{4}-\left(x-\frac{3}{2}\right)^2\le\frac{-7}{4}\)

Vậy \(MAXA=\frac{-7}{4}\Leftrightarrow x-\frac{3}{2}=0\Rightarrow x=\frac{3}{2}\)

15 tháng 7 2016

\(B=2\left(x^2-\frac{3}{2}x+1\right)=2\left(x^2-2\times x\times\frac{3}{4}+\frac{9}{16}-\frac{9}{16}+1\right)=2\left(x-\frac{3}{4}\right)^2+\frac{7}{8}\ge\frac{7}{8}\)

MIN B = 7/8 <=> x=3/4