Tìm chữ số tận cùng của số sau:
\(\left[\dfrac{10^{20000}}{10^{100}+3}\right]\)
(Kí hiệu \(\left[a\right]\) là số nguyên lớn nhất không vượt quá \(a\))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\left[\dfrac{34x+19}{11}\right]=\left[\dfrac{33x+11}{11}+\dfrac{x+8}{11}\right]=\left[x+1+\dfrac{x+8}{11}\right]\)
Nếu \(x< -19\) thì \(\left[\dfrac{34x+19}{11}\right]< 2x+1\) , vô lí.
Nếu \(-19\le x< -8\) thì \(-1\le\dfrac{x+8}{11}< 0\) nên \(\left[x+1+\dfrac{x+8}{11}\right]=x\), suy ra \(x=2x+1\) \(\Rightarrow x=-1\), loại.
Nếu \(-8\le x< 3\) thì \(0\le\dfrac{x+8}{11}< 1\) nên \(\left[x+1+\dfrac{x+8}{11}\right]=x+1\), suy ra \(x+1=2x+1\Leftrightarrow x=0\) (thỏa mãn)
Nếu \(x\ge3\) thì \(\dfrac{34x+19}{11}>2x+2\) hay \(\left[\dfrac{34x+19}{11}\right]\ge2x+2>2x+1\), vô lí.
Vậy \(x=0\)
đặt \(a=5+2\sqrt{6}\).ta sẽ chứng minh với dạng tổng quát \(\left[a^n\right]\)là 1 số tự nhiên lẻ.
ta có: \(a^n=\left(5+2\sqrt{6}\right)^n=x+y\sqrt{6}\)(x,y là các số tự nhiên) (*)
đặt \(b=5-2\sqrt{6}\Rightarrow b^n=x-y\sqrt{6}\)
\(\Rightarrow a^n+b^n=2x\)
mà \(0< b=5-2\sqrt{6}< 1\)
\(\Rightarrow0< b^n< 1\)
\(\Rightarrow2x-1< a^n=2x-b^n< 2x\)
nên \(\left[a^n\right]=2x-1\)lẻ vì x nguyên.
p/s:(*) : thử \(\left(5+2\sqrt{6}\right)^2,\left(5+2\sqrt{6}\right)^3\)đều có dạng \(A+B\sqrt{6}\)
Ta có : $[2,3]=2$
$[\dfrac{1}{2}]=0$
$[-4]=-4$
$[-5,16]=-6$
- Ta thấy \([2,3]\) là số nguyên lớn nhất mà không vượt quá 2,3 là số 2.
Vậy \([2,3]\) = 2
- Số nguyên lớn nhất không vượt quá \(\dfrac{1}{2}\) là 0.
Vậy \(\left[\dfrac{1}{2}\right]\) = 0
- Số nguyên lớn nhất không vượt quá -4 là -4
Vậy \(\left[-4\right]\) = -4
- Số nguyên lớn nhất không vượt quá -5,16 là -6
Vậy \(\left[-5,16\right]\) = -6
1.nhan xet
voi a thuoc Z
\(\left[\sqrt{a^2}\right]=\left[\sqrt{a^2+1}\right]=...=\left[\sqrt{a^2+2a}\right]\)
do do\(\left[\sqrt{a^2}\right]+\left[\sqrt{a^2+1}\right]+...+\left[\sqrt{a^2+2a}\right]=\frac{2a\left(2a+1\right)}{2}=a\left(2a+1\right)\)
thay a=1 cho den 10
tu tinh ra 825