Câu 6. (1,5 điểm) Cho tam giác ABC có AB = AC và M là trung điểm của cạnh BC.
a) Chứng mình ∆ABM = ∆ACM.b) Từ điểm A vẽ tia Ax // BC, trên tia Ax lấy điểm D sao cho AD = BC và nối DC.
Chứng minh ∆CDA = ∆ABC.
gấp ạ ai giúp mình với cảm ơn nhiều ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
b: Ta có: ΔABM=ΔACM
=>\(\widehat{BAM}=\widehat{CAM}\)
=>\(\widehat{DAM}=\widehat{EAM}\)
Xét ΔDAM và ΔEAM có
DA=EA
\(\widehat{DAM}=\widehat{EAM}\)
AM chung
Do đó: ΔDAM=ΔEAM
=>MD=ME
c: Xét ΔNKD và ΔNMB có
NK=NM
\(\widehat{KND}=\widehat{MNB}\)(hai góc đối đỉnh)
ND=NB
Do đó: ΔNKD=ΔNMB
=>\(\widehat{NKD}=\widehat{NMB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên KD//BM
mà M\(\in\)BC
nên KD//BC
Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
nên DE//BC
Ta có: KD//BC
DE//BC
KD,DE có điểm chung là D
Do đó: K,D,E thẳng hàng
Bạn tự vẽ hình nha
a)Xét tam giác AMB và tam giác DMC ta có:
MA=MD(GT)
AMB=DMC(ĐĐ)
MB=MC(Vì M là TĐ)
\(\Rightarrow\)Tam giác AMB=Tam giác DMC(c.g.c)
b)
Xét tam giác AMC và tam giác DMB ta có:
MA=MD(GT)
AMB=DMC(ĐĐ)
MB=MC(Vì M là TĐ)
\(\Rightarrow\)Tam giác AMC=Tam giác DMB(c.g.c)
\(\Rightarrow\)MAC=MDB(Cặp góc tương ứng)
\(\Rightarrow\)AC//BD(so le trong)
Câu c đợi mk nghĩ đã
a) Xét tam giác ABD: AB = AD (gt).
=> Tam giác ABD cân tại A.
Mà AH là phân giác góc BAD (gt).
=> AH là trung tuyến (Tính chất tam giác cân).
=> H là trung điểm của cạnh BD (đpcm).
a: Ta có: ΔABD cân tại A
mà AH là đường phân giác
nên H là trung điểm của BD
b: Xét ΔABF và ΔADF có
AB=AD
\(\widehat{BAF}=\widehat{DAF}\)
AF chung
Do đó: ΔABF=ΔADF
Suy ra: FB=FD
Xét ΔBFE và ΔDFC có
FB=FD
\(\widehat{FBE}=\widehat{FDC}\)
BE=DC
Do đó: ΔBFE=ΔDFC
Suy ra: \(\widehat{BFE}=\widehat{DFC}\)
mà \(\widehat{DFC}+\widehat{DFB}=180^0\)
nên \(\widehat{BFE}+\widehat{BFD}=180^0\)
=>D,E,F thẳng hàng
a: Ta có: ΔABD cân tại A
mà AH là đường phân giác
nên H là trung điểm của BD
b: Xét ΔABF và ΔADF có
AB=AD
\(\widehat{BAF}=\widehat{DAF}\)
AF chung
Do đó: ΔABF=ΔADF
Suy ra: FB=FD
Xét ΔBFE và ΔDFC có
FB=FD
\(\widehat{FBE}=\widehat{FDC}\)
BE=DC
Do đó: ΔBFE=ΔDFC
Suy ra: \(\widehat{BFE}=\widehat{DFC}\)
mà \(\widehat{DFC}+\widehat{DFB}=180^0\)
nên \(\widehat{BFE}+\widehat{BFD}=180^0\)
=>D,E,F thẳng hàng
a) Nối C với D
Xét tam giác AMB và tam giác DMC ta có:
AM = DM (gt)
Góc AMB = góc CMD ( 2 góc đối đỉnh)
BM = CM (gt)
=> Tam giác AMB = tam giác DMC (c.g.c)
=> AB =CD ( 2 cạnh tương ứng)
b) Ta có tam giác AMB = tam giác DMC ( từ chứng minh a)
=>Góc MAB = góc MDC ( 2 góc tương ứng)
=> AB//CD ( có 2 góc ở vị trí so le trong bằng nhau)
=> ACD + CAB = 180 độ (2 đường thẳng // => 2 góc trong cùng phía bù nhau)
90 + CAB = 180 độ
=> CAB = 180 - 90 = 90 độ
c) Xét tam giác ABC và tam giác CDA ta có:
AC cạnh chung
Góc A = góc C = 90 độ (Chứng minh b)
AB = CD ( chứng minh a)
=> Tam giác ABC = tam giác CDA (c.g.c)
=> AD = CB ( 2 cạnh tương ứng)
Mà AM = MD (giả thuyết)
=> AM = \(\frac{1}{2}\)AD = \(\frac{1}{2}\)BC
Vậy AM = \(\frac{1}{2}\)BC
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
b: Xét ΔCDA và ΔABC có
AD=CB
\(\widehat{DAC}=\widehat{BCA}\)(hai góc so le trong, DA//BC)
CA chung
Do đó: ΔCDA=ΔABC