K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2023

a: Xét ΔABM và ΔACM có

AB=AC

BM=CM

AM chung

Do đó: ΔABM=ΔACM

b: Xét ΔCDA và ΔABC có

AD=CB

\(\widehat{DAC}=\widehat{BCA}\)(hai góc so le trong, DA//BC)

CA chung

Do đó: ΔCDA=ΔABC

24 tháng 12 2020
さ→❖๖☆☆ I⃣K⃣K⃣I⃣ G⃣ấU⃣ A⃣N⃣I⃣M⃣E⃣❖༻꧂ •๖ۣۜTεαм ƒαʋσυɾĭтε αηĭмε⁀ᶦᵈᵒᶫ
17 tháng 12 2023

a: Xét ΔABM và ΔACM có

AB=AC

BM=CM

AM chung

Do đó: ΔABM=ΔACM

b: Ta có: ΔABM=ΔACM

=>\(\widehat{BAM}=\widehat{CAM}\)

=>\(\widehat{DAM}=\widehat{EAM}\)

Xét ΔDAM và ΔEAM có

DA=EA

\(\widehat{DAM}=\widehat{EAM}\)

AM chung

Do đó: ΔDAM=ΔEAM

=>MD=ME

c: Xét ΔNKD và ΔNMB có

NK=NM

\(\widehat{KND}=\widehat{MNB}\)(hai góc đối đỉnh)

ND=NB

Do đó: ΔNKD=ΔNMB

=>\(\widehat{NKD}=\widehat{NMB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên KD//BM

mà M\(\in\)BC

nên KD//BC

Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

nên DE//BC

Ta có: KD//BC

DE//BC

KD,DE có điểm chung là D

Do đó: K,D,E thẳng hàng

8 tháng 12 2016

Bạn tự vẽ hình nha

a)Xét tam giác AMB và tam giác DMC ta có:
        MA=MD(GT)

         AMB=DMC(ĐĐ)

        MB=MC(Vì M là TĐ)

      \(\Rightarrow\)Tam giác AMB=Tam giác DMC(c.g.c)

b)

Xét tam giác AMC và tam giác DMB ta có:
        MA=MD(GT)

         AMB=DMC(ĐĐ)

        MB=MC(Vì M là TĐ)

      \(\Rightarrow\)Tam giác AMC=Tam giác DMB(c.g.c)

\(\Rightarrow\)MAC=MDB(Cặp góc tương ứng)

\(\Rightarrow\)AC//BD(so le trong)

Câu c đợi mk nghĩ đã

8 tháng 12 2016

c)MK chỉ gợi ý thôi nha

Cần chứng minh CD//AB và CH//AB

23 tháng 1 2022

a) Xét tam giác ABD: AB = AD (gt). 

=> Tam giác ABD cân tại A.

Mà AH là phân giác góc BAD (gt).

=> AH là trung tuyến (Tính chất tam giác cân).

=> H là trung điểm của cạnh BD (đpcm).

a: Ta có: ΔABD cân tại A

mà AH là đường phân giác

nên H là trung điểm của BD

b: Xét ΔABF và ΔADF có 

AB=AD

\(\widehat{BAF}=\widehat{DAF}\)

AF chung

Do đó: ΔABF=ΔADF

Suy ra: FB=FD

Xét ΔBFE và ΔDFC có

FB=FD

\(\widehat{FBE}=\widehat{FDC}\)

BE=DC

Do đó: ΔBFE=ΔDFC

Suy ra: \(\widehat{BFE}=\widehat{DFC}\)

mà \(\widehat{DFC}+\widehat{DFB}=180^0\)

nên \(\widehat{BFE}+\widehat{BFD}=180^0\)

=>D,E,F thẳng hàng

a: Ta có: ΔABD cân tại A

mà AH là đường phân giác

nên H là trung điểm của BD

b: Xét ΔABF và ΔADF có 

AB=AD

\(\widehat{BAF}=\widehat{DAF}\)

AF chung

Do đó: ΔABF=ΔADF

Suy ra: FB=FD

Xét ΔBFE và ΔDFC có

FB=FD

\(\widehat{FBE}=\widehat{FDC}\)

BE=DC

Do đó: ΔBFE=ΔDFC

Suy ra: \(\widehat{BFE}=\widehat{DFC}\)

mà \(\widehat{DFC}+\widehat{DFB}=180^0\)

nên \(\widehat{BFE}+\widehat{BFD}=180^0\)

=>D,E,F thẳng hàng

6 tháng 12 2016

a) Nối C với D

Xét tam giác  AMB và tam giác DMC ta có:

AM = DM (gt)

Góc AMB = góc CMD ( 2 góc đối đỉnh)

BM = CM (gt)

=> Tam giác AMB = tam giác DMC (c.g.c)

=> AB =CD ( 2 cạnh tương ứng)

b) Ta có tam giác AMB = tam giác DMC ( từ chứng minh a)

=>Góc MAB = góc MDC ( 2 góc tương ứng)

=> AB//CD ( có 2 góc ở vị trí so le trong bằng nhau)

=> ACD + CAB = 180 độ (2 đường thẳng // => 2 góc trong cùng phía bù nhau)

       90  + CAB = 180 độ 

=>            CAB = 180 - 90 = 90 độ

c)  Xét tam giác ABC và tam giác CDA ta có:

AC cạnh chung

Góc A = góc C = 90 độ (Chứng minh b)

AB = CD ( chứng minh a)

=> Tam giác ABC = tam giác CDA (c.g.c)

=> AD = CB ( 2 cạnh tương ứng)

Mà AM = MD (giả thuyết)

=> AM = \(\frac{1}{2}\)AD = \(\frac{1}{2}\)BC

Vậy AM = \(\frac{1}{2}\)BC

2 tháng 1 2019

I Don’t Nkow😂😂😂