(x mũ 2 + 5) x (x + 3) < 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: (x+5)(3x-12)>0
=>(x-4)(x+5)>0
=>x>4 hoặc x<-5
b: (x+4)(x-6)<0
=>x+4>0 và x-6<0
=>-4<x<6
c: (5x+5)(x+2)<0
=>(x+1)(x+2)<0
=>-2<x<-1
d: =>(x-2)(x+2)<=0
=>-2<=x<=2
\(a,\left(-5\right).\left|x\right|=-75\)
\(\left|x\right|=\frac{-75}{-5}=15\)
\(\Rightarrow\orbr{\begin{cases}x=15\\x=-15\end{cases}}\)
Vậy....
\(b,\left(-6\right)^3.x^2=-1944\)
\(-216.x^2=-1944\)
\(x^2=9\)
\(\Rightarrow x=\pm3\)
Vậy....
\(d,\left|9-x\right|=-7+64\)
\(\left|9-x\right|=57\)
\(\Rightarrow\orbr{\begin{cases}9-x=57\\9-x=-57\end{cases}\Rightarrow\orbr{\begin{cases}x=-48\\x=66\end{cases}}}\)
Vậy...
\(e,\left|x+101\right|-\left(-16\right)=\left(-43\right).\left(-5\right)\)
\(\left|x+101\right|+16=215\)
\(\left|x+101\right|=199\)
\(\Rightarrow\orbr{\begin{cases}x+101=199\\x+101=-199\end{cases}\Rightarrow\orbr{\begin{cases}x=98\\x=-300\end{cases}}}\)
Vậy..
hok tốt!!
a,\(\left(-5\right).\left|x\right|=-75\)
\(=>\left|x\right|=-75:\left(-5\right)=15\)
\(=>\orbr{\begin{cases}x=15\\x=-15\end{cases}}\)
b,\(\left(-6\right)^3.x^2=-1944\)
\(=>\frac{1944}{216}=x^2\)
\(=>x=\sqrt{\frac{1944}{216}}=3\)
1. 4x2 + 4x + 2 = (4x2 + 4x + 1) + 1 = (2x + 1)2 + 1
Có: (2x+1)2 ≥ 0 ∀x => (2x+1)2 + 1 ≥ 1 > 0 (đpcm)
3. -x2 + 4x - 5 = -(x2 - 4x + 4) - 1 = -(x - 2)^2 - 1
Có: -(x-2)^2 ≤ 0 => -(x-2)^2 -1 ≤ - 1 < 0 (đpcm)
7. (x+2)(x-5) + 15 = x2 - 3x + 5 = (x2 - 2.x.\(\dfrac{3}{2}\)+ \(\dfrac{9}{4}\)) + \(\dfrac{11}{4}\)
= ( x - \(\dfrac{3}{2}\))^2 + \(\dfrac{11}{4}\) \(\ge\dfrac{11}{4}>0\left(đpcm\right)\)
\(\left(x^2-3\right).\left(x^2-5\right)< 0\)
=>x2-3<0;x2-5<0 hoặc x2-3>0;x2-5<0
+)Ta thấy x2-3>x2-5 với mọi x
=>x2-3>0;x2-5<0
\(\Rightarrow x^2>3;x^2< 5\)
\(\Rightarrow3< x^2< 5\)
Để x là một số nguyên thì x2 cũng là một số nguyên
=>\(x^2\in\left\{1;4\right\}\)
\(\Rightarrow x\in\left\{\pm1;\pm2\right\}\)
Vậy \(x\in\left\{\pm1;\pm2\right\}\)
Chúc bn học tốt
2. \(-x^2+2x-2=-\left(x^2+2x+1\right)-1=-\left(x+1\right)^2-1\)
vì: \(-\left(x+1\right)^2\forall x\le0\Rightarrow-\left(x+1\right)^2-1\le-1< 0\left(đpcm\right)\)
6.
\(\left(x-2\right)\left(x-4\right)+3=x^2-6x+11=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\)
vì: \(\left(x-3\right)^2\ge0\forall x\Rightarrow\left(x-3\right)^2+2\ge2>0\left(đpcm\right)\)
(1)
(x+1)(x-7)+17>0
<=>x^2-6x+9+1>0
<=>(x-3)^2+1>0(dpcm)
..
(7)
-y^2+4y-4-|x+1|≤0
<=>-(y-2)^2-|x+1|≤0
sum 2 so khong duong ko the la so (+)=>dpcm
1.(x+1)(x-7)+17=(x-3)2+1>0
2.-20-(x-5)(x+3)=-34-(x-1)2<0
3.-2(x+3)-(x-2)(x+2)=-(x+1)2-1<0
4.x2+y2+2x+2y+3=(x+1)2+(y+1)2+1>0
5.2x2+2x+y2+2y+5=2(x+1/2)2+(y+1)2+2>0
6.2x2+2y2+2xy+2x+4y+6=(x+y)2+(x+1)2+(y+2)2+1>0
7.-y2+4y-4-/x+1/=-(y-2)2-/x+1/≤0
Đề bài:\(5^x\times5^{x+1}\times5^{x+2}\le100...0\left(18\text{ số }10\right):2^{18}\)
Hay có thể viết thế này:\(5^x.5^{x+1}.5^{x+2}\le10^{18}:2^{18}=5^{18}\)
\(\Leftrightarrow5^{x+\left(x+1\right)+\left(x+2\right)}\le5^{18}\)
\(\Leftrightarrow x+\left(x+1\right)+\left(x+2\right)\le18\)
\(\Leftrightarrow3x+3\le18\)
\(\Leftrightarrow3x\le15\Leftrightarrow x\le5\)
Lời giải:
$(x^2+5)(x+3)<0$
$\Rightarrow x+3<0$ (do $x^2+5\geq 5>0$ với mọi $x$)
$\Rightarrow x< -3$