tìm x biết : 2x2 + 5x = 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a) \(2x^4-4x^3+2x^2\)
\(=2x^2\left(x^2-2x+1\right)\)
\(=2x^2\left(x-1\right)^2\)
b) \(2x^2-2xy+5x-5y\)
\(=\left(2x^2-2xy\right)+\left(5x-5y\right)\)
\(=2x\left(x-y\right)+5\left(x-y\right)\)
\(=\left(x-y\right)\cdot\left(2x+5\right)\)
2 .
a,
\(4x\left(x-3\right)-x+3=0\)
⇒\(4x\left(x-3\right)-\left(x-3\right)=0\)
⇒\(\left(x-3\right)\left(4x-1\right)=0\)
⇒\(\left[{}\begin{matrix}x-3=0\\4x-1=0\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}x=3\\4x=1\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}x=3\\x=\dfrac{1}{4}\end{matrix}\right.\)
vậy \(x\in\left\{3;\dfrac{1}{4}\right\}\)
b,
\(\)\(\left(2x-3\right)^2-\left(x+1\right)^2=0\)
⇒\(\left(2x-3-x-1\right)\left(2x-3+x+1\right)\) = 0
⇒\(\left(x-4\right)\left(3x-2\right)=0\)
⇔\(\left[{}\begin{matrix}x-4=0\\3x-2=0\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}x=4\\3x=2\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}x=4\\x=\dfrac{2}{3}\end{matrix}\right.\)
vậy \(x\in\left\{4;\dfrac{2}{3}\right\}\)
Câu 1
Do x = 2 là nghiệm của A(x)
⇒⇒A(2) = 0
2.2² + a.2 + b = 0
8 + 2a + b = 0
b = -8 - 2a (1)
Do x = 3 là nghiệm của A(x)
⇒ A(3) = 0
2.3² + a.3 + b = 0
18 + 3a + b = 0 (2)
Thay (1) vào (2) ta được:
18 + 3a + (-8 - 2a) = 0
18 + 3a - 8 - 2a = 0
a + 10 = 0
a = -10
Thay a = -10 vào (1) ta được:
b = -8 - 2.(-10)
= 12
Vậy a = -10; b = 12
Đặt \(A\left(x\right)=0\Rightarrow2x^2+ax+b=0\) \(\left(1\right)\)
Thay \(x=2\) vào \(\left(1\right)\Rightarrow2.2^2+2a+b=0\)
\(\Rightarrow2a+b=-8\left(2\right)\)
Thay \(x=3\) vào \(\left(1\right)\Rightarrow2.3^2+3a+b=0\)
\(\Rightarrow3a+b=-18\left(3\right)\)
Từ \(\left(2\right),\left(3\right)\Rightarrow\left\{{}\begin{matrix}a=-10\\b=12\end{matrix}\right.\)
Vậy \(a=-10,b=12\)
Ta có f(x) + g(x) = 4x - 1. Khi đó nghiệm của đa thức tổng là x = 1/4. Chọn C
\(2x^2+5x=3\)
\(2x^2+5x-3=0\)
\(2x^2-x+6x-3=0\)
\(\left(2x^2-x\right)+\left(6x-3\right)=0\)
\(x\left(2x-1\right)+3\left(2x-1\right)=0\)
\(\left(2x-1\right)\left(x+3\right)=0\)
\(2x-1=0\) hoặc \(x+3=0\)
*) \(2x-1=0\)
\(2x=1\)
\(x=\dfrac{1}{2}\)
*) \(x+3=0\)
\(x=0-3\)
\(x=-3\)
Vậy \(x=-3;x=\dfrac{1}{2}\)
\(2x^2+5x=3\)
\(\text{ }\Leftrightarrow2x^2+5x-3=0\)
\(\Leftrightarrow2x^2+6x-x-3=0\)
\(\Leftrightarrow2x\left(x+3\right)-\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(2x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)