K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2017

= -2,5 nha chị

18 tháng 8 2017

(x2+y2-5)2-4x2y2-16xy-16

a) Ta có: \(2x^2\left(3x^2-7x-5\right)\)

\(=2x^2\cdot3x^2-2x^2\cdot7x-2x^2\cdot5\)

\(=6x^4-14x^3-10x^2\)

c) Ta có: \(\left(16x^4-20x^2y^3-4x^5y\right):\left(-4x^2\right)\)

\(=16x^4:\left(-4x^2\right)+20x^2y^3:4x^2+4x^5y:4x^2\)

\(=-4x^3+5y^3+x^3y\)

21 tháng 2 2022
a.49x8+49x2=49x(8+2) =49x10 =490 Các câu khác làm tương tự
13 tháng 4 2019

27 tháng 8 2023

a) 6x³ : (-3x²) = [6 : (-3)] . (x³ : x²)

= -2x

b) (-9x²) : 6x

= (-9 : 6) . (x² : x)

= -3/2 x

c) (-16x⁴) : (-12x³)

= [-16 : (-12)] . (x⁴ : x³)

= 4/3 x

d) (8x³ + 4x² - 6x) : 2x

= 8x³ : 2x + 4x² : 2x - 6x : 2x

= 4x² + 2x - 3

5 tháng 3 2023

1)

`7x^2 -49x=0`

`<=>x(7x-49)=0`

\(< =>\left[{}\begin{matrix}x=0\\7x-49=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x=7\end{matrix}\right.\)

2)

`8x^2 -16x=0`

`<=>x(8x-16)=0`

\(< =>\left[{}\begin{matrix}x=0\\8x-16=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

3)

`2x^3 +40x=0`

`<=>x(2x^2 +40)=0`

`<=>x=0` hoặc`2x^2 +40=0`

`<=>x=0` hoặc `2x^2 =-40` (vô lí vì `2x^2` luôn lớn hơn hoặc bằng 0)

`<=>x=0`

 

4)

`-x^3 +16x=0`

`<=>x^3 -16x=0`

`<=>x(x^2 -16)=0`

\(< =>\left[{}\begin{matrix}x=0\\x^2-16=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x^2=16\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)

31 tháng 8 2019

\(=\dfrac{\left(7x-y\right)\left(7x+y\right)}{7x-y}=7x+y\)

25 tháng 12 2018

Đáp án là  B.

Đặt t = x - 2 x  Đạo hàm  t , = 1 + 2 x 2 >   0

Do đó t ( 1 ) ≤ t ≤ t ( 2 ) , ∀ x ∈ [ 1 ; 2 ] , suy ra  - 1 ≤ t ≤ 1

Ta có  x 2 + 4 x 2 = t 2 + 4 , x 4 + 16 x 4 = ( x 2 + 4 x 2 ) 2 - 8 = ( t 2 + 4 ) 2 - 8 = t 4 + 8 t 2 + 8

Phương trình đã cho trở thành

t 4 + 8 t 2 + 8 - 4 ( t 2 + 4 ) - 12 t = m ⇔ t 4 + 4 t 2 - 12 t = m + 8   ( * )

Phương trình đã cho có nghiệm trong đoạn [1;2] khi và chỉ khi phương trình (*) có nghiệm trong [-1;1] Xét hàm số y=f(t)= t 4 + 4 t 2 - 12 t  trên [-1;1]

Đạo hàm  y , = 4 t 8 + 8 t - 12 ,   t ∈ ( - 1 ; 1 ) . y , = 4 ( t - 1 ) ( t 2 + t + 3 ) < 0 , ∀ t ∈ ( - 1 ; 1 )

Bảng biến thiên:

Do đó để phương trình đã cho có nghiệm trên [1;2] thì  - 7 ≤ m + 8 ≤ 17 ⇔ - 15 ≤ m ≤ 9

18 tháng 2 2022

\(\left[{}\begin{matrix}x=\dfrac{7-\sqrt{17}}{8}\\x=\dfrac{7+\sqrt{17}}{8}\end{matrix}\right.\)

18 tháng 2 2022

\(\Leftrightarrow\left(x-2\right)\left(4x+1\right)=0\)

\(\Leftrightarrow x-2=0\)                  hay          \(4x+1=0\)

\(\Leftrightarrow x=2\)                                      \(\Leftrightarrow\)  \(4x=-1\)

                                                     \(\Leftrightarrow x=-\dfrac{1}{4}\)

Vậy \(S=\left\{2,-\dfrac{1}{4}\right\}\)