Xác định a,b sao cho
f(x)=\(6x^4-7x^3+ax^2+3x+2\)chia hết cho \(x^2-x+b\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. f(x)=g(x) (6x2−x+a−6b−1) + (a−5b+2)x + (2+6b2+b−ab) ⇒ f(x)⋮g(x)⇔a−5b+2=2+6b2+b−ab=0 ⇒ (b,a)=(−1;−7) ; (−2;−12)
c: \(\Leftrightarrow2x^3-6x^2+4x+x^2-3x+2+a-2⋮x^2-3x+2\)
=>a-2=0
=>a=2
d: \(\dfrac{5x^3+4x^2-6x-a}{5x-1}=\dfrac{5x^3-x^2+5x^2-x-5x+1-a-1}{5x-1}\)
\(=x^2+x-1+\dfrac{-a-1}{5x-1}\)
Để dư bằng -3 thì -a-1=-3
=>a+1=3
=>a=2
x^4+6x^3+7x^2-6x+a=x^4+2.3x.x^2+9x^2-6x-2x^2+a
=(x^2+3x)^2-2(3x+x^2)+a=(3x+x^2)(x^2+3x-2)+a
vậy a=3(3x+x^2)
tôi chịu, sai thì... T.T
Đặt tính chia tìm thương và dư của f(x) cho g(x) ta được:
\(f\left(x\right)=g\left(x\right)\cdot\left(6x^2-x+a-6b-1\right)+\left[\left(a-5b+2\right)+\left(6b^2+b-ab+2\right)\right]\)
Vậy để f(x) chia hết cho g(x) thì dư phải bằng 0, khi đó:
\(\hept{\begin{cases}a-5b+2=0\\6b^2+b-ab+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=5b-2\\6b^2+b-b\left(5b-2\right)+2=0\Rightarrow b^2+3b+2=0\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}b=-1\Rightarrow a=-7\\b=-2\Rightarrow a=-12\end{cases}}\)
Vậy các giá trị cần xác định của a, b để f(x) chia hết cho g(x) là (a;b) = (-7;-1) , (-12;-2)
làm mẫu 1 phần thôi men còn lại tự làm
giải
a)
ax^3+ bx-24 x^2+4x+3 ax-4a ax^3+4ax^2+3ax - -4ax^2+(b-3a)x-24 -4ax^2-16ax-12a - (b-3a+16a)x-(24-12a)
Để \(A\left(x\right)⋮B\left(x\right)\)\(\Leftrightarrow\hept{\begin{cases}b-3a+16a=0\\24-12a=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b+13.2=0\\a=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b=-26\\a=2\end{cases}}\)
tách f(x) rồi còn thừa thiếu bao nhiêu dùng hệ số bất định là ra ngay ấy mà