\(lim_{x\rightarrow\left(-1\right)^+}\left(x^3+1\right)\left(\sqrt{\dfrac{3x}{x^2-1}}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\lim\limits_{x\rightarrow-1}\dfrac{\sqrt{4x+5}-2x-3}{\left(x+1\right)^2}\)
\(=\lim\limits_{x\rightarrow-1}\dfrac{4x+5-\left(2x+3\right)^2}{\sqrt{4x+5}+2x+3}\cdot\dfrac{1}{\left(x+1\right)^2}\)
\(=\lim\limits_{x\rightarrow-1}\left(\dfrac{4x+5-4x^2-12x-9}{\left(\sqrt{4x+5}+2x+3\right)\cdot\left(x+1\right)^2}\right)\)
\(=\lim\limits_{x\rightarrow-1}\left(\dfrac{-4x^2-8x-4}{\left(\sqrt{4x+5}+2x+3\right)\cdot\left(x+1\right)^2}\right)\)
\(=\lim\limits_{x\rightarrow-1}\left(\dfrac{-4\left(x^2+2x+1\right)}{\left(x+1\right)^2\cdot\left(\sqrt{4x+5}+2x+3\right)}\right)\)
\(=\lim\limits_{x\rightarrow-1}\dfrac{-4}{\sqrt{4x+5}+2x+3}\)
\(=\dfrac{-4}{\sqrt{-4+5}-2+3}=\dfrac{-4}{1+1}=-\dfrac{4}{2}=-2\)
Chọn \(f\left(x\right)=5x+5\)
Khi đó: \(\lim\limits_{x\rightarrow1}\dfrac{5x-5}{\left(\sqrt{x}-1\right)\left(\sqrt{20x+29}+3\right)}=\lim\limits_{x\rightarrow1}\dfrac{5\left(\sqrt{x}+1\right)}{\sqrt{20x+29}+3}=\dfrac{10}{7+3}=1\)
Da nan roi mang meo lam mat het bai -.-
1/ \(=\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt[3]{\dfrac{3x^3}{x^3}+\dfrac{1}{x^3}}+\sqrt{\dfrac{2x^2}{x^2}+\dfrac{x}{x^2}+\dfrac{1}{x^2}}}{-\sqrt[4]{\dfrac{4x^4}{x^4}+\dfrac{2}{x^4}}}=\dfrac{-\sqrt[3]{3}-\sqrt{2}}{\sqrt[4]{4}}\)
2/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{8x^7}{\left(-2x^7\right)}=-\dfrac{8}{2^7}\)
3/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{\left(4x^2-3x+4-4x^2\right)\left(\sqrt{x^2+x+1}+x\right)}{\left(x^2+x+1-x^2\right)\left(\sqrt{4x^2-3x+4}+2x\right)}=\dfrac{-3.2}{2}=-3\)
\(=\lim\limits_{x\rightarrow0}\dfrac{\sqrt[3]{x+1}-1+1-\sqrt[]{1-x}}{x}=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{x}{\sqrt[3]{\left(x+1\right)^2}+\sqrt[3]{x+1}+1}+\dfrac{x}{1+\sqrt[]{1-x}}}{x}\)
\(=\lim\limits_{x\rightarrow0}\left(\dfrac{1}{\sqrt[3]{\left(x+1\right)^3}+\sqrt[3]{x+1}+1}+\dfrac{1}{1+\sqrt[]{1-x}}\right)=\dfrac{1}{3}+\dfrac{1}{2}=\dfrac{5}{6}\)
Với -1<x<0 ta có:
\(\left(x^3+1\right)\sqrt{\dfrac{3x}{x^2-1}}=\left(x+1\right)\left(x^2-x+1\right)\sqrt{\dfrac{3x}{\left(x-1\right)\left(x+1\right)}}\)
\(=\sqrt{x+1}\left(x^2-x+1\right)\sqrt{\dfrac{3x}{x-1}}\)
\(\Rightarrow\lim\limits_{x\rightarrow\left(-1\right)^+}\left(x^3+1\right)\sqrt{\dfrac{3x}{x^2-1}}=0\)
Bạn có thể giải thích tại sao sau loạt phân tích bạn lại suy ra được dòng cuối cùng không?
Lời giải:
a) \(\lim\limits_{x\to -\infty}\frac{x+3}{3x-1}=\lim\limits_{x\to -\infty}\frac{1+\frac{3}{x}}{3-\frac{1}{x}}=\frac{1}{3}\)
b)
\(\lim\limits_{x\to +\infty}\frac{(\sqrt{x^2+1}+x)^n-(\sqrt{x^2+1}-x)^n}{x}=\lim\limits_{x\to +\infty} 2[(\sqrt{x^2+1}+x)^{n-1}+(\sqrt{x^2+1}+x)^{n-1}(\sqrt{x^2+1}-x)+....+(\sqrt{x^2+1}-x)^{n-1}]\)
\(=+\infty\)
\(\lim\limits_{x\rightarrow\left(-2\right)^+}\dfrac{\sqrt{8+2x}-2}{\sqrt{x+2}}\)
\(=\lim\limits_{x\rightarrow-2^+}\dfrac{2x+8-4}{\left(\sqrt{2x+8}+2\right)\cdot\sqrt{x+2}}\)
\(=\lim\limits_{x\rightarrow-2^+}\dfrac{2\cdot\sqrt{x+2}}{\sqrt{2x+8}+2}=\dfrac{2\cdot\sqrt{-2+2}}{\sqrt{2\cdot\left(-2\right)+8}+2}\)
=0
Do \(\lim\limits_{x\rightarrow-1}\dfrac{2f\left(x\right)+1}{x+1}=5\) hữu hạn nên \(2f\left(x\right)+1=0\) phải có nghiệm \(x=-1\)
\(\Leftrightarrow2f\left(-1\right)=-1\Leftrightarrow f\left(-1\right)=-\dfrac{1}{2}\)
Đoạn dưới tự hiểu là \(\lim\limits_{x\rightarrow-1}\) (vì kí tự lim rất rắc rối)
\(I=\dfrac{\left[4f\left(x\right)+3\right]\left[\sqrt{4f^2\left(x\right)+2f\left(x\right)+4}-2\right]+2\left[4f\left(x\right)+3\right]-2}{x^2-1}\)
\(=\dfrac{\left[4f\left(x\right)+3\right]\left[4f^2\left(x\right)+2f\left(x\right)\right]}{\left(x+1\right)\left(x-1\right)\left[\sqrt{4f^2\left(x\right)+2f\left(x\right)+4}+2\right]}+\dfrac{4\left[2f\left(x\right)+1\right]}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{2f\left(x\right)+1}{x+1}.\dfrac{f\left(x\right).\left[4f\left(x\right)+3\right]}{x-1}+\dfrac{2f\left(x\right)+1}{x+1}.\dfrac{4}{x-1}\)
\(=5.\dfrac{f\left(-1\right).\left[4f\left(-1\right)+3\right]}{-2}+5.\dfrac{4}{-2}=\dfrac{5.\left(-\dfrac{1}{2}\right)\left(-2+3\right)}{-2}+5.\dfrac{4}{-2}=...\)
Không phải dạng, nó chỉ là ứng dụng kiến thức cơ bản về giới hạn của hàm thôi
\(\lim\limits_{x\rightarrow\left(-1\right)^+}\left(x^3+1\right)\cdot\sqrt{\dfrac{3x}{x^2-1}}\)
\(=\lim\limits_{x\rightarrow\left(-1\right)^+}\left(x^2-x+1\right)\left(x+1\right)\cdot\dfrac{\sqrt{3x}}{\sqrt{\left(x-1\right)\left(x+1\right)}}\)
\(=\lim\limits_{x\rightarrow\left(-1\right)^-}\sqrt{x+1}\cdot\left(x^2-x+1\right)\cdot\sqrt{\dfrac{3x}{x-1}}\)
\(=\sqrt{-1+1}\left[\left(-1\right)^2-\left(-1\right)+1\right]\cdot\sqrt{\dfrac{3\left(-1\right)}{-1-2}}\)
=0