phân tích đa thức thành nhân tử 2x2-x-15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x3 – 2x2 + x
= x.x2 – x.2x + x (Xuất hiện nhân tử chung là x)
= x(x2 – 2x + 1) (Xuất hiện hằng đẳng thức (2))
= x(x – 1)2
\(x^3+2x^2+x\)
\(=x\left(x^2+2x+1\right)\)
\(=x\left(x+1\right)^2\)
x3 – 2x2 + x – xy2
(Có nhân tử chung x)
= x(x2 – 2x + 1 – y2)
(Có x2 – 2x + 1 là hằng đẳng thức).
= x[(x – 1)2 – y2]
(Xuất hiện hằng đẳng thức (3))
= x(x – 1 + y)(x – 1 – y)
\(=\left(2x^2+xy-3x\right)-\left(22xy+11y^2-33y\right)+\left(2x+y-3\right)\)
\(=x\left(2x+y-3\right)-11y\left(2x+y-3\right)+\left(2x+y-3\right)\)
\(=\left(x-11y+1\right)\left(2x+y-3\right)\)
\(2x^2+5x+3=2x^2+2x+3x+3=2x\left(x+1\right)+3\left(x+1\right)=\left(2x+3\right)\left(x+1\right)\)
\(2x^2+5x+3=2x^2+2x+3x+3=\left(2x^2+2x\right)+\left(3x+3\right)=2x\left(x+1\right)+3\left(x+1\right)=\left(x+1\right)\left(2x+3\right)\)
\(2x^2-7+3=2x^2-6x-x+3=2x\left(x-3\right)-\left(x-3\right)=\left(x-3\right)\left(2x-1\right)\)
\(2x^2+5x-3\\ =2x^2+6x-x-3\\ =2x\left(x+3\right)-\left(x+3\right)\\ =\left(x+3\right)\left(2x-1\right)\)
\(2x^2+xy-y^2=\left(x^2-xy\right)+\left(x^2-y^2\right)=x\left(x-y\right)+\left(x-y\right)\left(x+y\right)=\left(x-y\right)\left[x+\left(x-y\right)\right]=\left(x-y\right)\left(x+x-y\right)=\left(x-y\right)\left(2x+y\right)\)
\(2x^2-x-15=2x^2-6x+5x-15=2x\left(x-3\right)+5\left(x-3\right)=\left(x-3\right)\left(2x+5\right)\)