Cho tam giác đều ABC có cạnh 6cm. Trên tia đối của tia AB lấy điểm D sao cho AD=2cm. Trên tia đối của tia AC lấy điểm E sao cho AE=2cm.
a, Tứ giác BEDC là hình gì?
b, Tính độ dài CD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAED và ΔACB có
\(\dfrac{AE}{AC}=\dfrac{AD}{AB}\)
\(\widehat{EAD}=\widehat{CAB}\)
Do đó: ΔAED\(\sim\)ΔACB
Suy ra: \(\widehat{AED}=\widehat{ACB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên DE//BC
Xét tứ giác BEDC có DE//BC
nên BEDC là hình thang
mà EC=BD
nên BEDC là hình thang cân
1,
a, Áp dụng định lý Pi-ta-go vào \(\Delta ABC\)
\(BC=\sqrt{8^2+6^2}\)
\(=10cm\)
b, Xét chung \(\Delta BEC\)và \(\Delta DEC\)
\(EC\)chung
\(BC=CD\hept{\begin{cases}\Delta BEC\\\Delta DEC\end{cases}}\)
\(G=\widehat{G}\)
\(\Delta ABC\)và \(\Delta ACD\)có \(\widehat{A_1}=\widehat{A_2};AB=AD;AC\)chung
\(\Rightarrow\Delta ABC=\Delta ACD\Rightarrow BC=CD;\widehat{G}=\widehat{G_2}\)
P/s: Dựa vào đây mà làm
a: BC=10cm
b: Xét ΔEDB có
EA là đường cao
EA là đường trung tuyến
Do đó: ΔEDB cân tại E
Xét ΔCDB có
CA là đường cao
CA là đường trung tuyến
Do đó: ΔCDB cân tại C
Xét ΔBEC và ΔDEC có
BE=DE
EC chung
BC=DC
Do đó: ΔBEC=ΔDEC