K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2017

q = 2, p = 5 nhưng vấn đề là cách làm thế nào mình không biết! ai biết giúp với!

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

16 tháng 4 2024

A ) nếu p=2 thì p+4=2+4=6(loại)

nếu p=3 thì p+4=3+4=7và p+10=3+10=13(thỏa mãn)

nếu p>3 thì ta có dạng p=3k+1 và p=3k+2

trường hợp 1: p=3k+2 thì p+10=3k+2+10=3k+12 chia hết cho 3 (loại)

trường hợp 2: p=3k+1 thì p+4=3k+1+4=3k+5

mà 3k+5=3k+3+2=3(k+1)+2 \(\Rightarrow\)p+10=3(k+1)+2+10=3(k+1)+12  (loại)

                 vậy p=3 thì p+10,p+4 là số nguyên tố

B)nếu q=2 thì q+2=2+2=4 (loại)

nếu q=3 thì q+2=3+2=5 và q+8=3+8=11 ( thỏa mãn)

nếu q>3 ta có dạng q=3k+1 và q=3k+2

trường hợp 1: q=3k+1  thì q+8=3k +1 +8=3k + 9 chia hết cho 3 ( loại)

trường hợp 2: q=3k +2 thì q+8=3k+2+8 =3k+10=3k+9+1=3(k+3)+1

\(\Rightarrow\)q+8=3(k+3)+1+8=3(k+3)+9 chia hết cho 3 ( loại)

            vậy q=3 thì q+2,q+8 là số nguyên tố

p=5; q=2

 

4 tháng 1 2023

a)nếu p=2 thì :

p+10=2+10=12 là hợp số(loại)

nếu p=3 thì:

p+10=3+10=13 là số nguyên tố 

p+14=3+14=17 là số nguyên tố

(thỏa mãn)

nếu p>3 thì:

p sẽ bằng 3k+1 hoặc 3k+2

trường hợp 1:p=3k+1

nếu p=3k+1 thì:

p+14=3k+1+14=3k+15=3 nhân (k+5)chia hết cho 3(3 chia hết cho3) là hợp số(loại)

trường hợp 2:p=3k+2

nếu p=3k+2 thì:

p+10=3k+2+10=3k+12=3 nhân (k + 4)chia hết cho 3(3 chia hết cho 3)là hợp số (loại)

vậy nếu  p>3 thì không có giá trị nào thỏa mãn

vậy p=3

b)nếu q=2 thì :

q+10=2+10=12 là hợp số(loại)

nếu q=3 thì:

q+2=3+2=5 là số nguyên tố 

q+10=3+10=13 là số nguyên tố

(thỏa mãn)

nếu q>3 thì:

q sẽ bằng 3k+1 hoặc 3k+2

trường hợp 1:q=3k+1

nếu q=3k+1 thì:

q+2=3k+1+2=3k+3=3 nhân (k+1)chia hết cho 3(3 chia hết cho3) là hợp số(loại)

trường hợp 2:q=3k+2

nếu q=3k+2 thì:

q+10=3k+2+10=3k+12=3 nhân (k + 4)chia hết cho 3(3 chia hết cho 3)là hợp số (loại)

vậy nếu  q>3 thì không có giá trị nào thỏa mãn

vậy q=3

28 tháng 12 2021

Ho

28 tháng 12 2021

???

15 tháng 12 2018

Nhận thấy p; q≥3p; q≥3 vì p=2;q=2p=2;q=2 không thỏa mãn.
Nếu pq+11pq+11 là số nguyên tố thì nó phải là số lẻ do nó là số nguyên tố >2>2
Suy ra ít nhất11 trong22 sốpp và q bằng22 (số nguyên tố chẵn)
Giả sử p=2p=2 khi đó
  7p+q=7.2+q=14+q7p+q=7.2+q=14+q
               -Nếu q=2q=2thì 7p+q=7.2+2=167p+q=7.2+2=16(loại)
               -Nếu q=3q=3thì pq+11=2.3+11=17pq+11=2.3+11=17(thỏa mãn)
                                              7p+q=7.2+3=17   7p+q=7.2+3=17 (thỏa mãn)
               -Nếu q=3k+1  (k∈N)q=3k+1  (k∈N) thì 7p+q=14+3k+1=3(k+5)7p+q=14+3k+1=3(k+5)(loại)
              - Nếu q=3k+2  (k∈N)q=3k+2  (k∈N) thì pq+11=2q+11=2(3k+2)+11=6k+15=3(2k+5)pq+11=2q+11=2(3k+2)+11=6k+15=3(2k+5)(loại)
\Rightarrow p=2; q=3Nhận thấy p; q≥3p; q≥3 vì p=2;q=2p=2;q=2 không thỏa mãn.
Nếu pq+11pq+11 là số nguyên tố thì nó phải là số lẻ do nó là số nguyên tố >2>2
Suy ra ít nhất11 trong22 sốpp và q bằng22 (số nguyên tố chẵn)
Giả sử p=2p=2 khi đó
  7p+q=7.2+q=14+q7p+q=7.2+q=14+q
               -Nếu q=2q=2thì 7p+q=7.2+2=167p+q=7.2+2=16(loại)
               -Nếu q=3q=3thì pq+11=2.3+11=17pq+11=2.3+11=17(thỏa mãn)
                                              7p+q=7.2+3=17   7p+q=7.2+3=17 (thỏa mãn)
               -Nếu q=3k+1  (k∈N)q=3k+1  (k∈N) thì 7p+q=14+3k+1=3(k+5)7p+q=14+3k+1=3(k+5)(loại)
              - Nếu q=3k+2  (k∈N)q=3k+2  (k∈N) thì pq+11=2q+11=2(3k+2)+11=6k+15=3(2k+5)pq+11=2q+11=2(3k+2)+11=6k+15=3(2k+5)(loại)
suy ra p=2; q=3

7 tháng 2 2020

7p + q và pq + 11 đều là số nguyên tố
pq + 11 là số nguyên tố --> pq phải là số chẵn --> hoặc p = 2 hoặc q = 2

** Nếu p = 2 --> 7p + q = 14 + q
ta thấy 14 chia 3 dư 2 ;
+) nếu q chia hết cho 3,q là số nguyên tố --> q = 3
--> 7p + q = 17 --> là số nguyên tố
--> pq + 11 = 17 --> là số nguyên tố --> thỏa

+) nếu q chia 3 dư 1 --> 14 + q chia hết cho 3 --> là hợp số --> loại

+) nếu q chia 3 dư 2 --> 2q chia 3 dư 1 --> pq + 11 = 2q + 11 chia hết cho 3 --> là hợp số --> loại

** Nếu q = 2 --> 7p + q = 2 + 7p
2 chia 3 dư 2 ;

+) nếu 7p chia hết cho 3 --> p chia hết cho 3 --> p = 3
--> 7p + q = 23
--> pq + 11 = 17 --> đều là ố nguyên tố --> thỏa

+) nếu 7p chia 3 dư 1 --> 2 + 7p chia hết cho 3 --> là hợp số --> loại

+) nếu 7p chia 3 dư 2 --> p chia 3 dư 2 --> 2p chia 3 dư 1
--> pq + 11 = 2p + 11 chia hết cho 3 --> là hợp số --> loại

Tóm lại có 2 giá trị của p ; q thỏa mãn là : p = 2 ; q = 3 hoặc p = 3 ; q = 2