Tìm các số nguyên x và y biết xy+2x+y=50
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: xy-2x+y=7
=> x(y-2)+y=7
=> x(y-2)+y-2=7-2
=> x(y-2)+(y-2)=5
=>(x+1)(y-2)=5
=>x+1\(\in\)Ư(5)={\(\pm\)1;\(\pm\)5}
ta có bảng sau:
x+1 | 1 | -1 | 5 | -5 |
x | 0 | -2 | 4 | -6 |
y-2 | 5 | -5 | 1 | -1 |
y | 7 | -3 | 3 | 2 |
Vậy(x,y)\(\in\){(0;7),(-2;-3),(4;3),(-6;2)}
4:
(x+1)(y-2)=5
=>\(\left(x+1;y-2\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;7\right);\left(4;3\right);\left(-2;-3\right);\left(-6;1\right)\right\}\)
2x + xy + y = 1
=> x(2 + y) + y + 2 = 1 + 2
=> x(y + 2) + 1(y + 2) = 3
=> (x + 1)(y + 2) = 3
=> x + 1 và y + 2 thuộc Ư(3) = {-1; 1; -3; 3}
ta có bảng :
x+1 | -1 | 1 | -3 | 3 |
y+2 | -3 | 3 | -1 | 1 |
x | -2 | 0 | -4 | 2 |
y | -5 | 1 | -3 | -1 |
xy - 2x + y = 3
=> x ( y - 2) + ( y - 2 ) = 3 - 2
=> ( x + 1 ) ( y - 2 ) = 1
=> x + 1 và y - 2 thuộc Ư(1) = { 1; -1 }
Lập bảng:
x + 1 | 1 | -1 |
x | 0 | -2 |
y - 2 | -1 | 1 |
y | 1 | 3 |
Vậy x=0 , y=-2 hoặc x=1 , y=3
\(\text{xy - 2x + y = 3}\)
\(\text{\Rightarrow x ( y - 2) + ( y - 2 ) = 3 - 2}\)
\(\text{\Rightarrow( x + 1 ) ( y - 2 ) = 1}\)
=> \(\text{x + 1}\) và \(\text{y - 2}\) thuộc \(Ư_{\left(1\right)}\in\left\{\pm1\right\}\)
Lập bảng:
\(x+1\) | \(1\) | \(-1\) |
\(x\) | \(0\) | \(-2\) |
\(y-2\) | \(-1\) | \(1\) |
\(y\) | \(1\) | \(3\) |
Vậy \(\left(x;y\right)\in\left\{\left(0;-2\right);\left(1;3\right)\right\}\)
=>x(y-2)+3y-6=15
=>(y-2)(x+3)=15
=>\(\left(x+3;y-2\right)\in\left\{\left(1;15\right);\left(15;1\right);\left(-1;-15\right);\left(-15;-1\right);\left(3;5\right);\left(5;3\right);\left(-3;-5\right);\left(-5;-3\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(-2;17\right);\left(12;3\right);\left(-4;-13\right);\left(-18;1\right);\left(0;7\right);\left(2;5\right);\left(-6;-3\right);\left(-8;-1\right)\right\}\)
Bài 2: Giả sử tồn tại x,y nguyên dương t/m đề, khi đó pt cho tương đương:
\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x+3\right)^2+\left(2y+3\right)^2=18\)
Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x+3=3\\2y+3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=0\end{cases}}\)
Vậy cặp nghiệm nguyên t/m pt là (x;y) = (0;0)
Làm lại bài 2 :v (P/S: Bạn bỏ bài kia đi nhé)
\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x-3\right)^2+\left(2y-3\right)^2=18\)
Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x-3=3\\2y-3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=3\end{cases}}\)
Vậy (x;y) = (3;3)
Tìm các số nguyên x và y, biết: xy-2x+y=7
xy-2x+y=7
x(y-2)+y=7
x(y-2)+(y-2)=5
(x+1)(y-2)=5
Vì x;y là số nguyên => x+1 và y-2 nguyên
=> x+1;y-2 \(\in\)Ư(5)
Ta có bảng:
x+1 | 1 | 5 | -1 | -5 |
y-2 | 5 | 1 | -5 | -1 |
x | 0 | 4 | -2 | -6 |
y | 7 | 3 | -3 | 1 |
Vậy ................................................................................................................................
xy-2x+y=7
=>x(y-2)+(y-2)=5
=>(x+1)(y-2)=5
Vì x,y thuộc Z nên x+1,y-2 thuộc Z
=>x+1,y-2 thuộc ước của 5
Lập bảng :
x+1 | -5 | -1 | 1 | 5 |
y-2 | -1 | -5 | 5 | 1 |
x | -6 | -2 | 0 | 4 |
y | 1 | -3 | 7 | 3 |
Vậy các cặp (x;y) thỏa mãn là : (-6;1) ; (-2;3) ; (0;7) ; (4;3)
xy - 2x + 3y = 3
x ( y - 2 ) + 3. ( y - 2 ) = 3 - 6
( x + 3 ) ( y - 2 ) = -3
ta có : -3 = 1 . ( - 3 ) = ( -1 ) . 3
sau đó bạn thử từng trường hợp ra là được
xy + 3x-2y=11
<=> x(y+3)-2(y+3)=5
<=>(x-2)(y+3)=5
suy ra (x-2) và (y+3) là các ước nguyên của 5.
Th1. x-2=1 <=>x=3
.......y+3=5 <=> y=2
Th2 x-2=-1 <=> x=1
.......y+3=-5 <=> y= -8
Th3. x-2=5 <=> x=7
.......y+3=1 <=> y= -2
Th4. x-2= -5 <=> x= -3
.......y+3= -1 <=> y= -4
Vậy (x,y) = (3, 2); (1, -8); (7, -2); (-3, -4)
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~
√x + √y = √1989 = 3√221 (1)
x, y ≥ 0.
VP chứa √221 là số vô tỷ (221 là số không chính phương)
=> vế trái là căn thức đồng dạng với √221
đặt: √x = a√221 , √y = b√221 với a, b nguyên không âm, (1) thành:
a + b = 3 => a = 0, 1,2,3
a = 0 => x = 0 và b = 3 => √y = 3√221 => y = 1989
a = 1 => x = 221 và b = 2 => √y = 2√221 => y = 4.221 = 884
a = 2 => x = 4.221 = 884 và y = 1 => y = 221
a = 3 => x = 9.221 = 1989 và b = 0 => y = 0
tóm lại: (x;y) = (0;1989)(221;884)(884; 221)(1989;0)