K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2017

432 cm

15 tháng 8 2017

432 cm nha

1 tháng 8 2018

1/

Ta có:  \(\left(1+\sqrt{15}\right)^2\)= 1 + 15 + \(2\sqrt{15}\)= 16 + \(2\sqrt{15}\)

              \(\sqrt{24}^2\)= 24 = 16 + 8

Vì:     \(\sqrt{15}^2\)= 15 < 16 =\(4^2\)

Nên:   \(\sqrt{15}< 4\)

=>       \(2\sqrt{15}< 8\)

=>       \(16+2\sqrt{15}< 24\)

=>      \(\left(1+\sqrt{15}\right)^2< \sqrt{24}^2\)

Vậy     \(1+\sqrt{15}< \sqrt{24}\)

2/

b/    \(3x-7\sqrt{x}=20\)\(\left(x\ge0\right)\)

<=> \(3x-7\sqrt{x}-20=0\)

<=> \(3x-12\sqrt{x}+5\sqrt{x}-20=0\)

<=> \(3\sqrt{x}\left(\sqrt{x}-4\right)+5\left(\sqrt{x}-4\right)=0\)

<=> \(\left(\sqrt{x}-4\right)\left(3\sqrt{x}+5\right)=0\)

<=> \(\sqrt{x}-4=0\)hoặc \(3\sqrt{x}+5=0\)

<=>   \(\sqrt{x}=4\)hoặc \(3\sqrt{x}=-5\)(vô nghiệm)

<=>   \(x=16\)

Vậy S=\(\left\{16\right\}\)

c/    \(1+\sqrt{3x}>3\)

<=> \(\sqrt{3x}>2\)

<=>   \(3x>4\)

<=>  \(x>\frac{4}{3}\)

d/      \(x^2-x\sqrt{x}-5x-\sqrt{x}-6=0\)(\(x\ge0\))

<=>   \(\left(x^2-5x-6\right)-\left(x\sqrt{x}+\sqrt{x}\right)=0\)

<=>   \(\left(x^2-6x+x-6\right)-\left(x\sqrt{x}+\sqrt{x}\right)=0\)

<=>    \([x\left(x-6\right)+\left(x-6\right)]-\sqrt{x}\left(x+1\right)=0\)

<=>   \(\left(x-6\right)\left(x+1\right)-\sqrt{x}\left(x+1\right)=0\)

<=>   \(\left(x+1\right)\left(x-6-\sqrt{x}\right)=0\)

<=>    \(\left(x+1\right)\left(x-3\sqrt{x}+2\sqrt{x}-6\right)=0\) 

<=>    \(\left(x+1\right)[\sqrt{x}\left(\sqrt{x}-3\right)+2\left(\sqrt{x}-3\right)]=0\)

<=>    \(\left(x+1\right)\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)=0\)

<=>     \(x+1=0\)  hoặc \(\sqrt{x}-3=0\)hoặc \(\sqrt{x}+2=0\)

<=>     \(x=-1\)(loại)  hoặc \(x=9\)hoặc \(\sqrt{x}=-2\)(vô nghiệm)

Vậy S={  9 }

Câu 1 : Phương trình nào trong các phương trình dưới đây là phương trình bậc nhất ?A. 7 - x - 3x2 = x - 3x2 B. 4 - x = - ( x - 1)C. 3 - x + x2 = x2 - x - 2 D. ( x - 3 )( x + 5 ) = 0Câu 2 : Phương trình nào dưới đây có tập nghiệm là S = {3; -1}A. ( x + 3)(x - 1) = 0 B. x2 + 3x + 2 = 0C. x( x – 3)(x + 1)2 = 0 D. ( x – 3)(x + 1) = 0Câu 3 : Phương trình nào dưới đây có vô số nghiệm ?A. ( x + 3 )( x2 + 5 ) = 0. B. x2 = - 9C. x3 = - 27 D. 5x -...
Đọc tiếp

Câu 1 : Phương trình nào trong các phương trình dưới đây là phương trình bậc nhất ?

A. 7 - x - 3x2 = x - 3x2 B. 4 - x = - ( x - 1)

C. 3 - x + x2 = x2 - x - 2 D. ( x - 3 )( x + 5 ) = 0

Câu 2 : Phương trình nào dưới đây có tập nghiệm là S = {3; -1}

A. ( x + 3)(x - 1) = 0 B. x2 + 3x + 2 = 0

C. x( x – 3)(x + 1)2 = 0 D. ( x – 3)(x + 1) = 0

Câu 3 : Phương trình nào dưới đây có vô số nghiệm ?

A. ( x + 3 )( x2 + 5 ) = 0. B. x2 = - 9

C. x3 = - 27 D. 5x - 3 + 3x = 8x - 3

Câu 4 : Phương trình - 2x2 + 11x - 15 = 0 có tập nghiệm là:

A. 3 B. C . D.

Câu 5. Điều kiện xác định của phương trình là:

A hoặc x ≠ -3 B.; C. và x ≠ - 3; D. x ≠ -3

Câu 6. Biết và CD = 21 cm. Độ dài của AB là:

A. 6 cm B. 7 cm; C. 9 cm; D. 10 cm

Câu 7. Cho tam giác ABC, AM là phân giác (hình 1). Độ dài đoạn thẳng MB bằng:

A. 1,7 B. 2,8 C. 3,8 D. 5,1

Câu 8. Trong Hình 2 biết MM' // NN', MN = 4cm, OM’ = 12cm và M’N’ = 8cm. Số đo của đoạn thẳng OM là:

A. 6cm; B. 8cm; C. 10cm; D. 5cm

Hình 1 Hình

2
22 tháng 7 2021

1.B

2.D

3.B

4;5;6;7;8( bạn sửa lại đề nhé )

 

 

Câu 1: B

Câu 2: D

Câu 3: B

Câu 14. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. Chứng minh rằng giá trị nhỏ nhất của P bằng 0.Câu 15. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau:x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0Câu 16. Tìm giá trị lớn nhất của biểu thức:Câu 17. So sánh các số thực sau (không dùng máy tính):Câu 18. Hãy viết một số hữu tỉ và một số vô tỉ lớn hơn √2 nhưng nhỏ hơn...
Đọc tiếp

Câu 14. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. Chứng minh rằng giá trị nhỏ nhất của P bằng 0.

Câu 15. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau:

x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0

Câu 16. Tìm giá trị lớn nhất của biểu thức:

Câu 17. So sánh các số thực sau (không dùng máy tính):

Câu 18. Hãy viết một số hữu tỉ và một số vô tỉ lớn hơn √2 nhưng nhỏ hơn √3

Câu 19. Giải phương trình: .

Câu 20. Tìm giá trị lớn nhất của biểu thức A = x2y với các điều kiện x, y > 0 và 2x + xy = 4.

Câu 21. Cho .

Hãy so sánh S và .

Câu 22. Chứng minh rằng: Nếu số tự nhiên a không phải là số chính phương thì √a là số vô tỉ.

Câu 23. Cho các số x và y cùng dấu. Chứng minh rằng:

Câu 24. Chứng minh rằng các số sau là số vô tỉ:

Câu 25. Có hai số vô tỉ dương nào mà tổng là số hữu tỉ không?

Câu 26. Cho các số x và y khác 0. Chứng minh rằng:

Câu 27. Cho các số x, y, z dương. Chứng minh rằng:

Câu 28. Chứng minh rằng tổng của một số hữu tỉ với một số vô tỉ là một số vô tỉ.

Câu 29. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2)

b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

c) (a1 + a2 + ….. + an)2 ≤ n(a12 + a22 + ….. + an2).

Câu 30. Cho a3 + b3 = 2. Chứng minh rằng a + b ≤ 2.

3
12 tháng 10 2021

Câu 29:

a: \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)

\(\Leftrightarrow-a^2+2ab-b^2\le0\)

\(\Leftrightarrow-\left(a-b\right)^2\le0\)(luôn đúng)

3 tháng 12 2021

Hả lơp 1 ????????