\(\frac{7}{8}\): ( x + 1 ) = \(\frac{8}{7}\)
Tim x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{5}{8}-\frac{x}{3}=\frac{-1}{8}\)
\(\frac{x}{3}=\frac{3}{4}\)
\(x\div3=\frac{3}{4}\)
\(x=\frac{9}{4}\)
Vậy \(x=\frac{9}{4}\)
\(\frac{7}{9}-\frac{4}{x}=\frac{5}{18}\)
\(\frac{4}{x}=\frac{1}{2}\)
\(4\div x=\frac{1}{2}\)
\(x=8\)
Vậy \(x=8\)
Ap dung t/c day ti so bang nhau
ta co x+1/9=x+2/8=x+3/7=x+4/6=x+1-x-2-x-3+x+4 tat ca phan 9-8-7+6 =0
\(x\left(\frac{1}{4}+\frac{1}{5}\right)-\left(\frac{1}{7}+\frac{1}{8}\right)=0\)
\(\frac{9}{20}x-\frac{15}{56}=0\)
\(\frac{9}{20}x=\frac{15}{56}\)
\(x=\frac{25}{42}\)
\(x\left[\frac{1}{4}+\frac{1}{5}\right]-\left[\frac{1}{7}+\frac{1}{8}\right]\) = \(0\)
\(\frac{9}{20}x-\frac{15}{56}\)= \(0\)
\(\frac{9}{20}x-\frac{15}{56}\)
\(x=\frac{25}{42}\)
Theo đầu bài ta có:
\(\frac{x-7}{7}+\frac{x-7}{8}=\frac{15}{56}\)
\(\Rightarrow\left(x-7\right)\cdot\frac{1}{7}+\left(x-7\right)\cdot\frac{1}{8}=\frac{15}{56}\)
\(\Rightarrow\left(x-7\right)\cdot\left(\frac{1}{7}+\frac{1}{8}\right)=\frac{15}{56}\)
\(\Rightarrow\left(x-7\right)\cdot\frac{15}{56}=\frac{15}{56}\)
\(\Rightarrow x-7=1\)
\(\Rightarrow x=8\)
\(\frac{1}{2}\left(x+1\right):\frac{3}{7}=\frac{32}{135}\)
\(\frac{1}{2}\left(x+1\right)=\frac{32}{135}.\frac{3}{7}\)
\(\frac{1}{2}\left(x+1\right)=\frac{32}{315}\)
\(x+1=\frac{32}{315}:\frac{1}{2}\)
\(x+1=\frac{64}{315}\)
\(x=\frac{64}{315}-1=-\frac{251}{315}\)
\(\frac{7+x}{8}=\frac{x-10}{3}\)
\(\Leftrightarrow3\left(7+x\right)=8\left(x-10\right)\)
\(\Leftrightarrow21+3x=8x-80\)
\(\Leftrightarrow3x-8x=-80-21\)
\(\Leftrightarrow-5x=-101\)
\(\Leftrightarrow x=\frac{101}{5}\)
\(\Rightarrow3\left(7+x\right)=8\left(x-10\right)\)
\(\Rightarrow21+3x=8x-80\)
\(\Rightarrow5x=101\)
\(\Rightarrow x=\frac{101}{5}\)
\(\frac{7}{8}:\left(x+1\right)=\frac{8}{7}\)
\(x+1=\frac{8}{7}\times\frac{7}{8}\)
\(x+1=1\)
\(x=1-1=0\)
Vậy x = 0 nha bn
\(\frac{7}{8}\):( X+ 1)= \(\frac{8}{7}\).
X+ 1= \(\frac{7}{8}\): \(\frac{8}{7}\).
X+ 1= \(\frac{49}{64}\).
X= \(\frac{49}{64}\)- 1.
X= -\(\frac{15}{64}\).