a. C/m tứ giác OCAD là hình thoi
b. Tính số đo góc COD
c. Kẻ tiếp tuyến với đường tròn (O) tại C, tiếp tuyến này cắt đường thẳng OA tại I. Tính độ dài CI theo R
d. C/m ID là tiếp tuyến của đường tròn (O)
e. C/m tam giác ICD đều
f. Kẻ đường kính DE của đường tròn (O). C/m EC//OI
O A C D H K I E
a/
Ta có
HA=HO (gt)
\(OA\perp CD\left(gt\right)\) => HC=HD (Trong đường tròn đường kính vuông góc với dây cung thì chia đôi dây cung)
=> OCAD là hbh (Tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hình bình hành)
Mà \(OA\perp CD\left(gt\right)\)
=> OCAD là hình thoi (Hình bình hành có 2 đường chéo vuôn góc là hình thoi)
b/ Kéo dài AO cắt (O) tại K ta có
\(\widehat{ACK}=90^o\) (góc nt chắn nửa đường tròn)
Xét tg vuông ACK có
\(OA=OK\Rightarrow OC=OA=OK=\dfrac{AK}{2}\) (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)
Mà \(OC=AC\) (cạn hình thoi)
\(\Rightarrow OC=AC=OA\) => tg ACO là tg đều \(\Rightarrow\widehat{AOC}=60^o\)
Mà \(\widehat{AOD}=\widehat{AOC}=60^o\) (trong hình thoi mỗi đường chéo là phân giác của 2 góc đối)
\(\Rightarrow\widehat{AOC}+\widehat{AOD}=\widehat{COD}=60^o+60^o=120^o\)
c/
Xét tg vuông COI có
\(\widehat{CIO}=90^o-\widehat{AOC}=90^o-60^o=30^o\)
\(\Rightarrow OC=\dfrac{1}{2}OI\) (trong tg vuông cạnh đối diện với góc \(30^o\) bằng nửa cạnh huyền
\(\Rightarrow OI=2.OC=2R\)
\(\Rightarrow CI=\sqrt{OI^2-OC^2}\) (Pitago)
\(\Rightarrow CI=\sqrt{4R^2-R^2}=R\sqrt{3}\)
d/
Xét tg COI và tg DOI có
OC=OD=R
OI chung
\(\widehat{AOC}=\widehat{AOD}\) (cmt)
=> tg ACO = tg ADO (c.g.c)\(\Rightarrow\widehat{ODI}=\widehat{OCI}=90^o\) => DI là tiếp tuyến với (O)
e/
Ta có
\(sđ\widehat{COD}=sđcungCD=120^o\) (góc có đỉnh là tâm đường tròn)
\(sđ\widehat{ACD}=\dfrac{1}{2}sđcungCD=60^o\) (góc giữa tiếp tuyến và dây cung)
\(sđ\widehat{ADC}=\dfrac{1}{2}sđcungCD=60^o\) (góc giữa tiếp tuyến và dây cung)
Xét tg ACD có
\(\widehat{CAD}=180^o-\left(\widehat{ACD}+\widehat{ADC}\right)=180^o-\left(60^o+60^o\right)=60^o\)
\(\Rightarrow\widehat{CAD}=\widehat{ACD}=\widehat{ADC}=60^o\) => tg ACD là tg đều
f/
Ta có
\(\widehat{ECD}=90^o\) (góc nt chắn nửa đường tròn) \(\Rightarrow EC\perp CD\)
\(OA\perp CD\left(gt\right)\Rightarrow OI\perp CD\)
=> EC//OI (cùng vuông góc với CD)