K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2017

Ta có:

\(A=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{98.100}\)

\(\Rightarrow A=\frac{1}{2}.\left(\frac{2}{2.4}+\frac{1}{4,6}+\frac{1}{6.8}+...+\frac{1}{98.100}\right)\)

\(\Rightarrow A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\right)\)

\(\Rightarrow A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{100}\right)\)

\(\Rightarrow A=\frac{1}{2}.\frac{49}{100}=\frac{49}{200}\)

14 tháng 8 2017

Đặt \(A=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{98.100}\)

\(4-2=2;6-4=2;...\)

\(2A=\frac{1}{2}-\left(\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\right)\)

\(2A=\frac{1}{2}-\frac{1}{100}\)

\(2A=\frac{49}{100}\)

\(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...........+\frac{1}{98.100}\)

\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\)

\(=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)

cho mình nha!

20 tháng 2 2016

=1/2-1/4+1/4-1/6+....+1/98-1/100

=1/2-1/100

=49/100

20 tháng 2 2016

=1/2-1/4+1/4-1/6+ ... +1/98-1/100

=1/2-1/100

=49/100

28 tháng 3 2019

 \(A=\frac{-1}{2.4}+\frac{-1}{4.6}+\frac{-1}{6.8}+...+\frac{-1}{98.100}\Leftrightarrow.\)\(-2A=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{98.100}\Leftrightarrow.\)

\(-2A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{100}\Leftrightarrow.\)

\(-2A=\frac{1}{2}-\frac{1}{100}\Leftrightarrow-2A=\frac{49}{100}\Leftrightarrow A=\frac{-49}{200}.\)

ĐÁP SỐ :   \(A=\frac{-49}{200}.\)

28 tháng 3 2019

\(\frac{-49}{200}\)

20 tháng 6 2020

Đặt BT trên là A

\(2A=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{100.102}\)

\(2A=\frac{4-2}{2.4}+\frac{6-4}{4.6}+\frac{8-6}{6.8}+...+\frac{102-100}{100.102}\)

\(2A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{100}-\frac{1}{102}\)

\(2A=\frac{1}{2}-\frac{1}{102}=\frac{50}{102}\Rightarrow A=\frac{25}{102}\)

Đặt A là biểu thức trên ta có : 

\(A=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{100.102}\)

\(=\frac{1}{2}\left(\frac{4-2}{2.4}+\frac{6-4}{4.6}+\frac{8-6}{6.8}+...+\frac{102-100}{100.102}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{100}-\frac{1}{102}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{102}\right)=\frac{1}{2}.\frac{50}{102}=\frac{25}{102}\)

4 tháng 12 2017

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2015.2106}\)

\(A=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+...+\left(\frac{1}{2015}-\frac{1}{2016}\right)\)

\(A=\frac{1}{1}-\frac{1}{2016}=\frac{2015}{2016}\)

\(B=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{2014.2016}=\frac{1}{4}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1007.1008}\right)\)

=> \(B=\frac{1}{4}.\left(\frac{1}{1}-\frac{1}{1008}\right)=\frac{1}{4}.\frac{1007}{1008}\)

=> \(B=\frac{1007}{4032}\)

28 tháng 4 2018

\(\Rightarrow2.\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{\left(2x-2\right).2x}\right)=\frac{1}{8}.2\).2

\(\Rightarrow\frac{2}{2.4}+\frac{2}{4.6}+...\frac{2}{\left(2x-2\right).2x}=\frac{1}{4}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2x-2}-\frac{1}{2x}=\frac{1}{4}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{2x}=\frac{1}{4}\)

\(\Rightarrow\frac{1}{2x}=\frac{1}{4}\Rightarrow\frac{1}{2x}=\frac{1}{2.2}\)

\(\Rightarrow x=2\)

28 tháng 4 2018

Đề có sai ko bn ?

4 tháng 8 2018

\(\frac{5}{2.4}+\frac{5}{4.6}+...+\frac{5}{98.100}\)

\(\frac{5}{2}-\frac{5}{4}+\frac{5}{4}-\frac{5}{6}+...+\frac{5}{98}-\frac{5}{100}\)

\(\frac{5}{2}-\frac{5}{100}\)

\(\frac{49}{50}\)

4 tháng 8 2018

\(Q=\frac{5}{2.4}+\frac{5}{4.6}+...+\frac{5}{98.100}\)

    \(=5\left(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{98.100}\right)\)

    \(=\frac{5}{2}.2.\left(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{98.100}\right)\)

    \(=\frac{5}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{98.100}\right)\)

    \(=\frac{5}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{98}-\frac{1}{100}\right)\)

    \(=\frac{5}{2}.\left(\frac{1}{2}-\frac{1}{100}\right)=\frac{5}{2}.\frac{49}{100}=\frac{49}{40}\)

\(\Rightarrow Q=\frac{49}{40}\)

19 tháng 3 2017

\(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{38.40}\)

=\(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{38}-\frac{1}{40}\)

=\(\frac{1}{2}-\frac{1}{40}\)

=\(\frac{19}{40}\)

19 tháng 3 2017

= 2 *[1/2 * 1/4 +1/4 *1/6 +1/6*1/8+...+1/38*1/40

=2*[1/2 - 1/40]

=2 * (-19/40)

= -380

3 tháng 5 2018

\(B=\frac{12}{\left(2.4\right)^2}+\frac{20}{\left(4.6\right)^2}+............+\frac{388}{\left(96.98\right)^2}+\frac{396}{\left(98.100\right)^2}\)

\(B=\frac{4^2-2^2}{\left(2.4\right)^2}+\frac{6^2-4^2}{\left(4.6\right)^2}+..........+\frac{98^2-96^2}{\left(96.98\right)^2}+\frac{100^2-98^2}{\left(98.100\right)^2}\)

\(B=\frac{1}{2^2}-\frac{1}{4^2}+\frac{1}{4^2}-...............-\frac{1}{98^2}+\frac{1}{98^2}-\frac{1}{100^2}\)

\(B=\frac{1}{2^2}-\frac{1}{100^2}\)

\(B=\frac{1}{4}-\frac{1}{10000}\)

\(B=\frac{2500}{10000}-\frac{1}{10000}\)

\(B=\frac{2499}{10000}\)

Vậy B = \(\frac{2499}{10000}\)