Cho A=1+3^1+3^2+3^3+.....+3^101.
Chứng minh A chia hết cho 13
Help cần lắm rồi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+3+3^2+3^3+...+3^{101}\\=(1+3+3^2)+(3^3+3^4+3^5)+(3^6+3^7+3^8)+...+(3^{99}+3^{100}+3^{101})\\=13+3^3\cdot(1+3+3^2)+3^6\cdot(1+3+3^2)+...+3^{99}\cdot(1+3+3^2)\\=13+3^3\cdot13+3^6\cdot13+...+3^{99}\cdot13\\=13\cdot(1+3^3+3^6+...+3^{99})\)
Vì \(13\cdot(1+3^3+3^6+...+3^{99})\vdots13\)
nên \(A⋮13\).
\(A=1+3+3^2+...+3^{101}\)
\(=\left(1+3+3^2\right)+...+\left(3^{99}+3^{100}+3^{101}\right)\)
\(=\left(1+3+3^2\right)+...+3^{99}\left(1+3+3^2\right)\)
\(=13\left(1+3^3+...+3^{99}\right)⋮13\)
\(A=1+3+3^2+...+3^{101}\)
\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{99}+3^{100}+3^{101}\right)\)
\(=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{99}\left(1+3+3^2\right)\)
\(=13\left(1+3^3+...+3^{99}\right)⋮13\)
A=2+22+23+...+299+2100A=2+22+23+...+299+2100
⇒2A=22+23+24+...+2100+2101⇒2A=22+23+24+...+2100+2101
⇒A=2101−2⇒A=2101−2
B=3+32+33+...+399+3100B=3+32+33+...+399+3100
⇒3B=32+33+34+...+3100+3101⇒3B=32+33+34+...+3100+3101
⇒2B=3101−3⇒2B=3101−3
⇒B=3101−32
3A = 3 + 32 + 33 + ..... + 32004
=> 2A = 3A - A = 3 + 32 + 33 + ... +32004 - 30 - 3 - 32 - ... - 32003
=> 2A = 32004 - 1
=> 2A = ( 312 )167 - 1 = 531441167 - 1 chia hết cho 531440
mà 531440 = 520 x 1022
=> 2A chia hết cho 520
=> A chia hết cho 520
Ta có: \(A=1+3^1+3^2+3^3+3^4+3^5+...+3^{101}\)
\(A=\left(1+3^1+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{99}+3^{100}+3^{101}\right)\)
\(A=\left(1+3^1+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{99}\left(1+3+3^2\right)\)
\(A=13+3^3.13+...+3^{99}.13\)
\(A=13\left(1+3^3+3^6+...+3^{99}\right)⋮13\)
=> đpcm
\(A=1+3+3^2+3^3+...+3^{101}\)
\(A=\left(1+3+3^2\right)+...+\left(3^{99}+3^{100}+3^{101}\right)\)
\(A=13+...+3^{99}.\left(1+3+3^2\right)\)
\(A=13+...+3^{99}.13\)
\(A=13.\left(1+...+3^{99}\right)\)
Vì \(13⋮13\) nên \(13.\left(1+...+3^{99}\right)⋮13\)
Vậy \(A⋮13\)
\(#NqHahh\)