K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2017

bạn dùng cái này nè(thầy mk chỉ đó)

\(\sqrt{A+2\sqrt{B}}=\sqrt{\left(\sqrt{m}+\sqrt{n}\right)^2}=\sqrt{m}+\sqrt{n}\)

Với m+n=A,m.n=B

14 tháng 8 2017

M và N à chuyển đổi từ cái j? 

18 tháng 9 2018

b,\(\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{\sqrt{192}}\)  \(=\sqrt{8\sqrt{3}}-2\sqrt{50\sqrt{3}}+4\sqrt{8\sqrt{3}}\)

\(=2\sqrt{2\sqrt{3}}-10\sqrt{2\sqrt{3}}+8\sqrt{2\sqrt{3}}\)

\(=0\)

d,\(A=\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)

\(\sqrt{2}A=\sqrt{2}(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}})\)

\(\sqrt2A=\sqrt{6-2\sqrt{5}}+\sqrt{6+2\sqrt{5}}\)

\(\sqrt2A=\sqrt{(\sqrt5-1)^2}\) \(+\sqrt{(\sqrt5+1)^2}\)    \(=\sqrt5-1 +\sqrt5+1=2\sqrt5\)

\(\Rightarrow A=\dfrac{2\sqrt5}{\sqrt2}\) \(=\sqrt{10}\)

a. \(\frac{\sqrt{3-\sqrt{5}}\left(3+\sqrt{5}\right)}{\sqrt{10}+\sqrt{2}}=\frac{\sqrt{3-\sqrt{5}}\left(3+\sqrt{5}\right)}{\sqrt{2}\left(\sqrt{5}+1\right)}\)

\(=\frac{\sqrt{6-2\sqrt{5}}\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}=\frac{\sqrt{\left(\sqrt{5}-1\right)^2}\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}\) 

\(=\frac{\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}=\frac{3\sqrt{5}-3+5-\sqrt{5}}{2\left(\sqrt{5}+1\right)}\)  

\(=\frac{2\sqrt{5}+2}{2\left(\sqrt{5}+1\right)}=\frac{2\left(\sqrt{5}+1\right)}{2\left(\sqrt{5}+1\right)}=1\)

a: \(=\dfrac{\sqrt{6-2\sqrt{5}}\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}=\dfrac{\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}\)

\(=\dfrac{3\sqrt{5}+5-3-\sqrt{5}}{2\left(\sqrt{5}+1\right)}=\dfrac{2\sqrt{5}+2}{2\left(\sqrt{5}+1\right)}=1\)

b: \(=\sqrt{\sqrt{3}}\left(2\sqrt{2}-2\cdot5\sqrt{2}+4\cdot8\sqrt{2}\right)\)

\(=\sqrt{\sqrt{3}}\cdot24\sqrt{2}\)

d: \(=\dfrac{\sqrt{6-2\sqrt{5}}+\sqrt{6+2\sqrt{5}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{5}-1+\sqrt{5}+1}{\sqrt{2}}=\dfrac{2\sqrt{5}}{\sqrt{2}}=\sqrt{10}\)

a: Ta có: \(\dfrac{4}{\sqrt{7}-\sqrt{3}}+\dfrac{6}{3+\sqrt{3}}+\dfrac{\sqrt{7}-7}{\sqrt{7}-1}\)

\(=\sqrt{7}+\sqrt{3}+3-\sqrt{3}-\sqrt{7}\)

=3

24 tháng 8 2021

`a)sqrt{4+sqrt7}-sqrt{4-sqrt7}`

`=sqrt{(8+2sqrt7)/2}-sqrt{(8-2sqrt7)/2}`

`=sqrt{(7+2sqrt7+1)/2}-sqrt{(7-2sqrt7+1)/2}`

`=sqrt{(sqrt7+1)^2/2}-sqrt{(sqrt7-1)^2/2}`

`=(sqrt7+1)/sqrt2-(sqrt7-1)/sqrt2`

`=2/sqrt2=sqrt2`

`b)sqrt{4--sqrt15}-sqrt{4+sqrt15}`

`=sqrt{(8-2sqrt15)/2}-sqrt{(8+2sqrt15)/2}`

`=sqrt{(5-2sqrt{5.3}+3)/2}-sqrt{(5+2sqrt{5.3}+3)/2}`

`=sqrt{(sqrt5-sqrt3)^2/2}-sqrt{(sqrt5+sqrt3)^2/2}`

`=(sqrt5-sqrt3)/sqrt2-(sqrt5+sqrt3)/sqrt2`

`=(-2sqrt3)/sqrt2=-sqrt6`

`c)sqrt{2+sqrt3}+sqrt{2-sqrt3}`

`=sqrt{(4+2sqrt3)/2}+sqrt{(4-2sqrt3)/2}`

`=sqrt{(3+2sqrt3+1)/2}+sqrt{(3-2sqrt3+1)/2}`

`=sqrt{(sqrt3+1)^2/2}+sqrt{(sqrt3-1)^2/2}`

`=(sqrt3+1)/sqrt2+(sqrt3-1)/sqrt2`

`=(2sqrt3)/sqrt2=sqrt6`

`d)sqrt{9+sqrt17}-sqrt{9-sqrt17}`

`=sqrt{(18+2sqrt17)/2}-sqrt{(18-2sqrt17)/2}`

`=sqrt{(17+2sqrt17+1)/2}-sqrt{(17-2sqrt17+1)/2}`

`=sqrt{(sqrt17+1)^2/2}-sqrt{(sqrt17-1)^2/2}`

`=(sqrt17+1)/sqrt2-(sqrt17-1)/sqrt2`

`=2/sqrt2=sqrt2`

a: Ta có: \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)

\(=\dfrac{\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{7}+1-\sqrt{7}+1}{\sqrt{2}}=\sqrt{2}\)

b: Ta có: \(\sqrt{4-\sqrt{15}}-\sqrt{4+\sqrt{15}}\)

\(=\dfrac{\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}}{\sqrt{2}}=-\sqrt{6}\)

5 tháng 11 2021

\(\text{Theo đề bài: }=\dfrac{3\sqrt{2}+6\sqrt{3}+2\sqrt{5}-\sqrt{6}}{2}\)

22 tháng 10 2021

\(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}+\dfrac{5}{2\sqrt{2}-3}-\dfrac{5}{\sqrt{3}+\sqrt{8}}\)

\(=\sqrt{3}+1+\sqrt{3}-1+2\sqrt{2}+3-2\sqrt{2}+3\)

\(=6+2\sqrt{3}\)

22 tháng 10 2021

\(=\sqrt{3+2\sqrt{2}+1}+\sqrt{3-2\sqrt{2}+1}-\dfrac{5\left(\sqrt{3}+2\sqrt{2}\right)}{\left(\sqrt{3}+2\sqrt{2}\right)\left(\sqrt{3}-2\sqrt{2}\right)}-\dfrac{5\left(\sqrt{3}-2\sqrt{2}\right)}{\left(\sqrt{3}+2\sqrt{2}\right)\left(\sqrt{3}-2\sqrt{2}\right)}\\ =\left|\sqrt[]{3}+1\right|+\left|\sqrt{3}-1\right|-\dfrac{5\left(\sqrt{3}+2\sqrt{2}\right)}{5}-\dfrac{5\left(\sqrt{3}-2\sqrt[]{2}\right)}{5}\\ =\sqrt{3}+1+\sqrt{3}-1-\sqrt{3}-2\sqrt{2}-\sqrt[]{3}+2\sqrt{2}\\ =0\)

Bài 20:

a) \(\sqrt{9-4\sqrt{5}}\cdot\sqrt{9+4\sqrt{5}}=\sqrt{81-80}=1\)

b) \(\left(2\sqrt{2}-6\right)\cdot\sqrt{11+6\sqrt{2}}=2\left(\sqrt{2}-3\right)\left(3+\sqrt{2}\right)\)

\(=2\left(2-9\right)=2\cdot\left(-7\right)=-14\)

c: \(\sqrt{2}\cdot\sqrt{2-\sqrt{3}}\cdot\left(\sqrt{3}+1\right)\)

\(=\sqrt{4-2\sqrt{3}}\cdot\left(\sqrt{3}+1\right)\)

\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)

=2

d) \(\sqrt{2-\sqrt{3}}\cdot\left(\sqrt{6}-\sqrt{2}\right)\left(2+\sqrt{3}\right)\)

\(=\sqrt{4-2\sqrt{3}}\cdot\left(\sqrt{3}-1\right)\left(2+\sqrt{3}\right)\)

\(=\left(4-2\sqrt{3}\right)\left(2+\sqrt{3}\right)\)

\(=8+4\sqrt{3}-4\sqrt{3}-6\)

=2

6 tháng 8 2021

cảm ơn anh ạ