Tìm cặp số tự nhiên (x,y) sao cho x2 +55=4y2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$x^2+55=4y^2$
$4y^2-x^2=55$
$(2y-x)(2y+x)=55$
Vì $x,y$ là số tự nhiên nên $2y+x, 2y-x$ là số nguyên và $2y+x>0$.
Mà $(2y-x)(2y+x)=55>0$ nên $2y-x>0$
Kết hợp với $2y+x\geq 2y-x$ ta có các TH sau:
TH1: $2y-x=1; 2y+x=55\Rightarrow y=14; x=27$
TH2: $2y-x=5; 2y+x=11\Rightarrow y=4; x=3$
\(x^2+4y^2=x^2y^2-2xy\)
\(\Rightarrow x^2+4y^2+4xy=x^2y^2+2xy+1-1\)
\(\Rightarrow\left(x+2y\right)^2=\left(xy+1\right)^2-1\)
\(\Rightarrow\left(xy+1\right)^2-\left(x+2y\right)^2=1\)
\(\Rightarrow\left(xy-x-2y+1\right)\left(xy+x+2y+1\right)=1\)
Vì x,y là các số nguyên nên \(\left(xy-x-2y+1\right),\left(xy+x+2y+1\right)\) là các ước số của 1. Do đó ta có 2 trường hợp:
TH1: \(\left\{{}\begin{matrix}xy-x-2y+1=1\\xy+x+2y+1=1\left(1\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}-xy+x+2y-1=-1\\xy+x+2y+1=1\end{matrix}\right.\)
\(\Rightarrow2\left(x+2y\right)=0\Rightarrow x=-2y\)
Thay vào (1) ta được:
\(-2y^2+1=1\Leftrightarrow y=0\Rightarrow x=0\)
TH2: \(\left\{{}\begin{matrix}xy-x-2y+1=-1\\xy+x+2y+1=-1\left(1\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}-xy+x+2y-1=1\\xy+x+2y+1=-1\end{matrix}\right.\)
\(\Rightarrow2\left(x+2y\right)=0\Rightarrow x=-2y\)
Thay vào (1) ta được:
\(-2y^2+1=-1\Leftrightarrow\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\)
\(y=1\Rightarrow x=-2;y=-1\Rightarrow x=2\)
Vậy các cặp số nguyên (x;y) thỏa điều kiện ở đề bài là \(\left(0;0\right),\left(2;-1\right)\left(-2;1\right)\)
Áp dụng bđt bunhia có:
\(\left(x^2+4y^2\right)\left(1+\dfrac{1}{4}\right)\ge\left(x+y\right)^2\)
\(\Leftrightarrow\dfrac{25}{4}\ge\left(x+y\right)^2\)\(\Leftrightarrow x+y\le\dfrac{5}{2}\)
Dấu = xảy ra\(\Leftrightarrow\left\{{}\begin{matrix}x=4y\\x^2+4y^2=5\end{matrix}\right.\Leftrightarrow\) \(\left\{{}\begin{matrix}16y^2+4y^2=5\\x=4y\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{2}\\x=2\end{matrix}\right.\)
d 10^n+72^n -1
=10^n -1+72n
=(10-1) [10^(n-1)+10^(n-2)+ .....................+10+1]+72n
=9[10^(n-1)+10^(n-2)+..........................-9n+81n
a, 17x3y chia hết cho 15 => 17x3y chia hết cho 5
TH1: y=0 => Các số chia hết 15: 17130, 17430, 17730 => x=1 hoặc x=4 hoặc x=7
TH2: y=5 => Các số chia hết cho 15: 17235, 17535, 17835 => x=2 hoặc x=5 hoặc x=8
Vậy: Các cặp số (x;y) thoả mãn: (x;y)= {(1;0); (4;0); (7;0); (2;5); (5;5); (8;5)}
34x5y chia hết cho 36 => 34x5y là số chẵn và chia hết cho 3, chia hết cho 9
TH1: y=0 => Các số chia hết cho 36: Không có số thoả
TH2: y=2 => Các số chia hết cho 36: 34452 => x=4
TH3: y=4 => Các số chia hết cho 36: Không có số thoả
TH4: y=6 => Các số chia hết cho 36: 34056; 34956 => x=0 hoặc x=9
TH5: y=8 => Các số chia hết cho 36: Không có số thoả
=> Các số chia hết cho 36 tìm được: 34452; 34056 và 34956
Vậy: (x;y)={(4;2); (0;6); (9;6)}
Để \(\overline{x73y}\) chia hết cho 4 thì \(\overline{3y}\) phải chia hết cho 4
Mà: \(\overline{3y}\) ⋮ 4 Khi \(y\in\left\{2;6\right\}\)
\(1\le x\le9\)
Để \(\overline{x73y}\) chia hết cho 5 khi \(y\in\left\{0;5\right\}\)
\(1\le x\le9\)
xy-x-y=2
xy-x-y+1=2+1
x(y-1) - (y-1)=3
(y-1)(x-1)=3
x;y nguyên
3=1.3=3.1=(-1)(-3)=(-3)(-1)
y-1 1 3 -1 -3
y 2 4 0 -2
x-1 3 1 -3 -1
x 4 2 -2 0
Vậy có những cặp x;y:
2;4
4;2
0;-2
-2;0
Lời giải:
$x^2+55=4y^2$
$\Leftrightarrow 55=4y^2-x^2=(2y-x)(2y+x)$
Do $x,y$ là stn nên $2y+x$ là stn.
$\Rightarrow 2y+x>0$. Mà $(2y+x)(2y-x)=55>0$ nên $2y-x>0$.
Vậy $2y+x> 2y-x>0$.
Khi đó ta có các TH sau:
TH1: $2y-x=1, 2y+x=55\Rightarrow y=14; x=27$ (tm)
TH2: $2y-x=5; 2y+x=11\Rightarrow y=4; x=3$ (tm)