Cho hình thang cân ABCD có AD//BC , AD<BC , AB vuông góc với AC , AB =3 cm , AC =4cm
A) viết hệ thức liên hệ giữa 3 cạnh của tam giác ABC
B) tính độ dài BC
C) tính độ đai BD và DC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, do CC' là chiều cao \(=>CC'\perp AD\)
theo giả thiết \(AD=10cm=>AD^2=100cm\)
mà \(AC=8cm,DC=6cm=>AC^2+DC^2=100cm\)
\(=>AC^2+CD^2=AD^2\)=>\(\Delta ADC\) vuông tại C(pytago đảo)
áp dụng hệ thức lượng\(CC'.AD=AC.CD=>CC'=\dfrac{8.6}{10}=4,8cm\)
b,theo t/c hình thang cân \(=>\left\{{}\begin{matrix}AB=CD=6cm\\AC=BD=8cm\end{matrix}\right.\)
hạ thêm \(BE\perp AD\)
áp dụng hệ thức lượng\(=>\left\{{}\begin{matrix}C'D=\dfrac{CD^2}{AD}\\AE=\dfrac{AB^2}{AD}\end{matrix}\right.\)\(=>\left\{{}\begin{matrix}C'D=\dfrac{6^2}{10}=3,6cm\\AE=\dfrac{6^2}{10}=3,6cm\end{matrix}\right.\)
\(=>EC'=AD-AE-C'D=10-3,6-3,6=2,8cm\)
ta chứng minh được \(BEC'C\) là hình chữ nhật\(=>EC'=BC=2,8cm\)
\(S\left(ABCD\right)=\dfrac{1}{2}.\left(AD+BC\right).CC'=\dfrac{1}{2}\left(10+2,8\right).4,830,72cm^2\)
đoạn cuối ấy tôi viết vôi quá
\(S\left(ABCD\right)=\dfrac{1}{2}\left(AD+BC\right).CC'=\dfrac{1}{2}\left(10+2,8\right).4,8=30,72cm^2\)
từ A hạ \(AE\perp DC\)
từ B hạ \(BF\perp DC\)
\(AB//CD=>AB//EF\)\(=>ABCD\) là hình chữ nhật
\(=>AB=EF=2cm\)
vì ABCD là hình thang cân\(=>\left\{{}\begin{matrix}AD=BC\\\angle\left(ADE\right)=\angle\left(BCF\right)\end{matrix}\right.\)
mà \(\angle\left(AED\right)=\angle\left(BFC\right)=90^o\)
\(=>\Delta ADE=\Delta BFC\left(ch.cgn\right)=>DE=FC=\dfrac{DC-EF}{2}=\dfrac{6-2}{2}=2cm\)
xét \(\Delta ADE\) vuông tại E có: \(AE=\sqrt{AD^2-ED^2}=\sqrt{3^2-2^2}=\sqrt{5}cm\)
\(=>S\left(ABCD\right)=\dfrac{\left(AB+CD\right)AE}{2}=\dfrac{\left(2+6\right)\sqrt{5}}{2}=4\sqrt{5}cm^2\)
Chứng minh chi bạn ? Nó là dấu hiệu nhận biết hình thang cân luôn rồi mà ?
a) Xét \(\Delta ACD\) vuông tại C, có:
\(CAD+ADC=90\) độ \(\Rightarrow ADC=90độ-ADC=90-60=30độ\)
AC là pgiac BAD=> \(CAD=CAB=\dfrac{1}{2}BAD\Rightarrow BAD=2CAD=2.30=60độ\)
Hình thang ABCD, có: BAD=CAD=60 độ=> ABCD là hình thang cân
b) \(\Delta ACD\) vuông tại C có : DAC=30 độ => \(CD=\dfrac{1}{2}AD\) (đlí)
BC//AD=>BCA=CAD (so le trong)
Mà BAC=DAC (cm a)
=> BAC=BCA => tam giác ABC cân tại A =>BC=AB
ABCD là hthang cân => AB=CD
Ta có: \(P_{ABCD}=AB+BC+CD+AD=CD+CD+CD+2CD=20\)
\(\Leftrightarrow CD=\dfrac{20}{5}=4\left(cm\right)\Rightarrow AD=2.CD=2.4=8\left(cm\right)\)
a: AB\(\perp\)AC
=>ΔABC vuông tại A
=>\(BC^2=AB^2+AC^2\)
b: Ta có: \(BC^2=AB^2+AC^2\)
=>\(BC^2=3^2+4^2=25\)
=>\(BC=\sqrt{25}=5\left(cm\right)\)
c: ABCD là hình thang cân
=>BD=AC
mà AC=4cm
nên BD=4cm