K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2024

tra loi đi

 

28 tháng 9 2017

a) Tìm được x = 2,2

b) Tìm được x = 2073

c) Tìm được x = 4 hoặc x = -2

d) Điều kiện x≠-1 . Tìm được x = 0 hoặc x = 3

23 tháng 2 2022

\(\dfrac{2x-1}{5}-\dfrac{4x}{3}=2x-\dfrac{x}{10}\\ \Leftrightarrow\dfrac{6\left(2x-1\right)}{30}-\dfrac{40x}{30}=\dfrac{60x}{30}-\dfrac{3x}{30}\\ \Leftrightarrow12x-6-40x=60x-3x\\ \Leftrightarrow-28x-6=57x\\ \Leftrightarrow57x+28x+6=0\\ \Leftrightarrow85x=-6\\ \Leftrightarrow x=-\dfrac{6}{85}\)

12 tháng 4 2022

\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)

\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)

\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)

\(\Leftrightarrow x^2-9-x^2+3x=0\)

\(\Leftrightarrow3x-9=0\)

\(\Leftrightarrow3x=9\)

\(\Leftrightarrow x=3\left(n\right)\)

Vậy \(S=\left\{3\right\}\)

12 tháng 4 2022

\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)

\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)

\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)

\(\Leftrightarrow12x-9-12x+20+2x-7>0\)

\(\Leftrightarrow2x+4>0\)

\(\Leftrightarrow2x>-4\)

\(\Leftrightarrow x>-2\)

NV
16 tháng 4 2022

a.

\(3\sqrt{-x^2+x+6}\ge2\left(1-2x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-x^2+x+6\ge0\\1-2x< 0\end{matrix}\right.\\\left\{{}\begin{matrix}1-2x\ge0\\9\left(-x^2+x+6\right)\ge4\left(1-2x\right)^2\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-2\le x\le3\\x>\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\25\left(x^2-x-2\right)\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}< x\le3\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\-1\le x\le2\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow-1\le x\le3\)

NV
16 tháng 4 2022

b.

ĐKXĐ: \(x\ge0\)

\(\Leftrightarrow\sqrt{2x^2+8x+5}-4\sqrt{x}+\sqrt{2x^2-4x+5}-2\sqrt{x}=0\)

\(\Leftrightarrow\dfrac{2x^2+8x+5-16x}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-4x+5-4x}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)

\(\Leftrightarrow\dfrac{2x^2-8x+5}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-8x+5}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)

\(\Leftrightarrow\left(2x^2-8x+5\right)\left(\dfrac{1}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{1}{\sqrt{2x^2-4x+5}+2\sqrt{x}}\right)=0\)

\(\Leftrightarrow2x^2-8x+5=0\)

\(\Leftrightarrow x=\dfrac{4\pm\sqrt{6}}{2}\)

20 tháng 7 2021

undefined

24 tháng 3 2017

a/ 4x + 20 = 0

⇔4x = -20

⇔x = -5

Vậy phương trình có tập nghiệm S = {-5}

b/ 2x – 3 = 3(x – 1) + x + 2

⇔ 2x-3 = 3x -3+x+2

⇔2x – 3x = -3+2+3

⇔-2x = 2

⇔x = -1

Vậy phương trình có tập nghiệm S = {-1}
 

24 tháng 3 2017

câu tiếp theo

a/ (3x – 2)(4x + 5) = 0

3x – 2 = 0 hoặc 4x + 5 = 0

  • 3x – 2 = 0 => x = 3/2
  • 4x + 5 = 0 => x = – 5/4

Vậy phương trình có tập nghiệm S= {-5/4,3/2}

b/ 2x(x – 3) – 5(x – 3) = 0

=> (x – 3)(2x -5) = 0

=> x – 3 = 0 hoặc 2x – 5 = 0

* x – 3 = 0 => x = 3

* 2x – 5 = 0 => x = 5/2

Vậy phương trình có tập nghiệm S = {0, 5/2}


 

a: \(\Leftrightarrow x\left(2x+10\right)-x\left(x-2\right)=0\)

=>x(2x+10-x+2)=0

=>x(x+12)=0

=>x=0 hoặc x=-12

b: \(\Leftrightarrow\left(2x-5\right)\left(x+11\right)+\left(2x-5\right)\left(2x+1\right)=0\)

=>(2x-5)(3x+12)=0

=>x=5/2 hoặc x=-4

c: \(\Leftrightarrow\left(2x\right)^2-\left(x+3\right)^2=0\)

=>(x-3)(3x+3)=0

=>x=3 hoặc x=-1

d: \(\Leftrightarrow\left(x+2\right)\left(5-4x\right)-\left(x+2\right)^2=0\)

\(\Leftrightarrow\left(x+2\right)\left(5-4x-x-2\right)=0\)

=>(x+2)(-5x+3)=0

=>x=-2 hoặc x=3/5

6 tháng 2 2022

\(a,\left(x-2\right)x=2x\left(x+5\right)\)

\(\Leftrightarrow\left(x-2\right)x-2x\left(x+5\right)=0\)

\(\Leftrightarrow x.\left(x-2-2x-10\right)=0\)

\(\Leftrightarrow x\left(-x-12\right)=0\Leftrightarrow\left\{{}\begin{matrix}x=0\\x+12=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x=-12\end{matrix}\right.\)

18 tháng 10 2021

\(a,\Leftrightarrow\left(x-5\right)^2=0\Leftrightarrow x-5=0\Leftrightarrow x=5\\ b,\Leftrightarrow\left(2x-1\right)^2=0\Leftrightarrow2x-1=0\Leftrightarrow x=1\\ c,\Leftrightarrow\left(1-2x\right)^2-\left(3x-2\right)^2=0\\ \Leftrightarrow\left(1-2x-3x+2\right)\left(1-2x+3x-2\right)=0\\ \Leftrightarrow\left(3-5x\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{3}{5}\end{matrix}\right.\\ d,\Leftrightarrow\left(x-2\right)^3=-\left(5-2x\right)^3\\ \Leftrightarrow x-2=-\left(5-2x\right)=2x-5\\ \Leftrightarrow x=3\)