Chứng minh rằng nếu tổng các lập phương của 3 số nguyên chia hết cho 9 thì tồn tại 1 trong 3 số đó là bội của 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1
Gọi 3 số nguyên liên tiếp là n-1 , n . n+1
(n-1)3 +n3+(n+1)3
= n3 - 3n2+3n -1 + n3 + n3 +3n2 +3n +1
= 3n3 + 6n
= 3n3- 3n + 9n
= 3 (n3-n) + 9n chia hết cho 9
2)
Có a3+b3+c3 chia hết cho 9 (1)
Giả sử a,b,c đều ko chia hết cho 3 (BS3\(\pm1\))
\(\Rightarrow\) lập phương mỗi số dạng BS9 \(\pm1\)
\(\Rightarrow a^3+b^{3^{ }}+c^3=BS9+r_1+r_2+r_3\)
Có r1,r2,r3 \(\in\left(1;-1\right)\)
Không có cách nào để r1,r2,r3 nào để tổng chia hết cho 9 trái với (1)
Vậy tồn tại 1 trong 3 số a,b,c là bội của 3
Trả lời
dễ mà gọi 2 số đó là x;y(x;yZ)
ta có \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
Vì \(x+y⋮3\)
\(\Rightarrow\left(x+y\right)\left(x^2-xy+y^2\right)⋮3\)
\(\Rightarrow x^3+y^3⋮3\)( đpcm )
Chứng minh rằng nếu tổng 3 số nguyên chia hết cho 3 thì tổng các lập phương của chúng chia hết cho 3
Gọi 3 số nguyên đó là a,b,c
Ta có: a+b+c chia hết cho 3
Xét hiệu a3+b3+c3-(a+b+c)
=a3+b3+c3-a-b-c=(a3-a)+(b3-b)+(c3-c) (1)
a3-a=a(a2-1)=(a-1)a(a+1) là tích 3 SN liên tiếp nên chia hết cho 3
tương tự ta cũng có b3-b và c3-c đều chia hết cho 3
Do đó VP (1) chia hết cho 3 => a3+b3+c3 chia hết cho 3
Vậy............
a3+b3=(a+b)(a2-ab+b2)
Mà a+b chia hết cho 3
Nên a3+b3 chia hết cho 3
gọi 2 số đó là x;y(x;y∈∈Z)
ta có x3+y3=(x+y)(x2−xy+y2)x3+y3=(x+y)(x2−xy+y2)
do x+y⋮⋮3 => DPCM
Chúc làm bài tốt
Ta giả sử 2 số đó là x, y (x,y\(\in Z\))
Theo đề ta có: \(x+y=3k\)
Lại có: \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=\left(x+y\right)^3-3xy\left(x+y\right)\)
\(=\left(x+y\right)^2\left(x+y\right)-3\left(x+y\right)xy=9k^2\left(x+y\right)-9kxy\)
\(=9k\left(kx+ky-xy\right)⋮9\)
=> đpcm
Gọi 2 số đó là x;y (x;y∈Z)
Ta có: x^3+y^3=(x+y)(x^2−xy+y^2)
Do x+y 3 => ..........
3 số nguyên liên tiếp có dạng (a-1);a;(a+1).
Tổng lập phương của chúng là:
(a-1)^3 + a^3 + (a+1)^3 = 3a^3 +6a
vì 3a^3 , 6a chia hết cho 3 nên..
có a^3 + b^3 + c^3 chia hết cho 9 (1)
giả sử a , b , c đều không chia hết cho 3 ( có dạng B(3) +_ 1 )
=> a^3 , b^3 , c^3 , đều có dạng B(9)+_ 1
do đó a^3 + b^3 + c^3 +r1 + r2 + r3 ( trong đó r1;r2;r3 bằng -1 hoặc 1 )
=> a^3 + b^3 + c^3 không chia hết cho 9 . ( trái với điều (1) )
=> 1 trong 3 số a, b, c, là bội của 3