K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2023

Viết đề cho đầy đủ và chính xác đi em

a: Xét ΔABD có 

M là trung điểm của AB

Q là trung điểm của AD

Do đó: MQ là đường trung bình của ΔABD

Suy ra: MQ//BD và \(MQ=\dfrac{BD}{2}\left(1\right)\)

Xét ΔBCD có 

P là trung điểm của CD

N là trung điểm của BC

Do đó: PN là đường trung bình của ΔABD

Suy ra: PN//BD và \(PN=\dfrac{BD}{2}\left(2\right)\)

Từ (1) và (2) suy ra MQ//PN và MQ=PN

hay MNPQ là hình bình hành

15 tháng 10 2021

a: Xét tứ giác AMCN có 

AM//CN

AM=CN

Do đó: AMCN là hình bình hành

a: Xét tứ giác BMDN có

BM//DN

BM=DN

Do đó: BMDN là hình bình hành

b: AM+MB=AB

CN+ND=CD

mà MB=ND và AB=CD

nên AM=CN

Xét tứ giác AMCN có

AM//CN

AM=CN

Do đó: AMCN là hình bình hành

c: AMCN là hình bình hành

=>AN//CM

=>NK//MH

BMDN là hình bình hành

=>BN//DM

=>NH//KM

Xét tứ giác MKNH có

MK//NH

MH//NK

Do đó: MKNH là hình bình hành

16 tháng 10 2023

ngu 

 

2 tháng 12 2021

Trên tia HM lấy Q sao cho HM= MQ sửa lại tia gì nhé sai r 

2 tháng 12 2021

Sửa chỗ đó: Vẽ Q là tia đối với HM

a) Xét tứ giác HCQB có: 

M trung điểm BC

HM=MQ => M trung điểm HQ ( vì HM là tia đối với MQ)

Mà 2 đường chéo này cắt nhau tại M 

=> HCQB là hbh ( 2 đường chéo cắt nhau tại trung điểm mỗi đường) (đpcm).

b) Vì HCQB là hbh

=>  HC/BQ

mà CE_|_ AB => HC_|_AB

=> CQ_|_EC

nên:CQ_|_AC (đpcm)

HCQB là hbh 

=> BE//CQ

Mà CE_|_AB

Nên: QB_|_AB (đpcm) 

c)  vì M là trung điểm HQ (tia đối)

        D trung điểm HP ( tia đối ) 

=>HM là đường tb của t/gPHQ 

Vì DM là đường tb nên DM//PQ

=> BC//PQ

=> BPQC là hình thang (1)

Xét tam giác HPQ có

HD=DP=1/2 HP (gt)

HM=MQ=1/2HQ (gt)

=> HP=HQ 

Do đó tam giác HPQ là tam giác cân tại H

=> ^HPQ=^HQP (2 góc tương ứng) (2)

Từ (1) và (2)=> BPQC là hình thang cân (đpcm)

d) ( câu này mình ngại làm b có thể bỏ đi)

undefined