K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2017

 

 

 

 

 

 

Ta có  S C D ∩ A B C D = C D

C D ⊥ S A C D ⊥ A C ⇒ C D ⊥ S A C ⇒ S C ⊥ C D

Vì  S C ⊥ C D , S C ⊂ S C D A C ⊥ C D , A C ⊂ A B C D

Nên  S C D , A B C D ^ = S C A ^ = 45 o

Dễ thấy ∆ S A C  vuông cân tại A

Suy ra SA = AC =  a 2

Lại có

  S M C D = 1 2 M C . M D = 1 2 a . a = a 2 2

Do đó

  V = V S . M C D = 1 3 S M C D S A = 1 3 . a 2 2 . a 2 = a 3 2 6

Ta có

  B D ∥ M N M N ⊂ S M N ⇒ B D ∥ S M N

Khi đó d( SM,BD ) = d( SM, (SMN) ) = d( D, (SMN) ) = d( A, ( SMN) )

Kẻ  A P ⊥ M N , P ∈ M N A H ⊥ S P , H ∈ S P

Suy ra  A H ⊥ S M N ⇒ d A S M N = A H

∆ S A P  vuông tại A có

1 A H 2 = 1 S A 2 + 1 A P 2 = 1 S A 2 + 1 A N 2 + 1 A M 2 = 1 2 a 2 + 1 a 2 4 + 1 a 2 = 11 2 a 2

Do đó d = d( SM, BD ) = AH =  a 22 11

Đáp án A

12 tháng 11 2019

Đáp án C.

* Hướng dẫn giải:

Ta có

Ta có  A H = 1 3 A C = a

Ta có A B = A C 2 - B C 2 = a 5

⇒ S A B C D = A B . A D = 2 a 5 2

⇒ V S . A B C D = 1 3 S H . S A B C D = 2 a 5 3 3

27 tháng 5 2018

12 tháng 4 2018

Chọn đáp án C.

25 tháng 5 2017

Đáp án C.

8 tháng 5 2018

Đáp án C.

Do:

S C ; A B C ^ = 60 0 ⇒ S C A ^ = 60 0 ⇒ S A = A C tan 60 0 = a 6

Ta có: Δ S A C  vuông tại A có đường cao AH.

Khi đó:

S A 2 = S H . S C ⇒ S A 2 S C 2 = S H S C = 6 a 2 6 a 2 + 2 a 2 = 3 4 ⇒ H C S C = 1 4 .

Do đó:

d H ; A B C D = 1 4 d C ; A B C D ⇒ V H . A B C D = 3 4 V S . A B C D = 1 4 . 1 3 . a 6 . 3 a 2 2 = a 2 6 8 .

5 tháng 1 2020

Đáp án B.

NV
19 tháng 1 2021

\(SA\perp\left(ABCD\right)\Rightarrow\widehat{SCA}=45^0\Rightarrow AC=SA=a\sqrt{2}\)

\(\Rightarrow AB=a\)

Gọi N là trung điểm SA \(\Rightarrow NM||SB\Rightarrow SB||\left(DMN\right)\)

\(\Rightarrow d\left(DM;SB\right)=d\left(SB;\left(DMN\right)\right)=d\left(B;\left(DMN\right)\right)\)

Mà M là trung điểm AB \(\Rightarrow d\left(B;\left(DMN\right)\right)=d\left(A;\left(DMN\right)\right)\)

Từ A kẻ AH vuông góc DM \(\Rightarrow DM\perp\left(NAH\right)\)

Trong mp (NAH), từ A kẻ \(AK\perp NH\Rightarrow AK=d\left(A;\left(DMN\right)\right)\)

\(\dfrac{1}{AH^2}=\dfrac{1}{AM^2}+\dfrac{1}{AD^2}\Rightarrow AH=\dfrac{AM.AD}{\sqrt{AM^2+AD^2}}=\dfrac{a\sqrt{5}}{5}\)

\(\dfrac{1}{AK^2}=\dfrac{1}{AN^2}+\dfrac{1}{AH^2}\Rightarrow AK=\dfrac{AN.AH}{\sqrt{AN^2+AH^2}}=\dfrac{a\sqrt{7}}{7}\)

10 tháng 12 2019

Đáp án D