aaa giúp vs ạa!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=3+3^2+...+3^{2005}\)
\(\Rightarrow3A=3^2+3^3+...+3^{2006}\)
\(\Rightarrow3A-A=3^{2006}-3\)
\(\Rightarrow2A=3^{2006}-3\)
\(\Rightarrow2A+3=3^{2006}\) là 1 lũy thừa của 3 (đpcm)
4.
\(B=1+1+2+2^2+2^3+...+2^{100}\)
\(2B=2+2+2^2+...+2^{101}\)
\(\Rightarrow2B-B=2+2^{101}-\left(1+1\right)=2^{101}\)
\(\Rightarrow B=2^{101}\) là 1 lũy thừa của 2 (đpcm)
Bài 1:
\(A=2+2^2+2^3+...+2^{2003}+2^{2004}\)
\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2002}+2^{2003}+2^{2004}\right)\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2002}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+2^4+...+2^{2002}\right)⋮7\)
Bài 2:
\(A=2+2^2+2^3+2^4+...+2^{59}+2^{60}\)
\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)
\(=15\cdot\left(2+2^5+...+2^{57}\right)⋮15\)
Bài 3:
\(A=1+3+3^2+3^3+...+3^{1990}+3^{1991}\)
\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{1989}+3^{1990}+3^{1991}\right)\)
\(=13+3^3\left(1+3+3^2\right)+...+3^{1989}\left(1+3+3^2\right)\)
\(=13\left(1+3^3+...+3^{1989}\right)⋮13\)
Bài 4:
\(A=4+4^2+4^3+4^4+...+4^{23}+4^{24}\)
\(=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{23}+4^{24}\right)\)
\(=\left(4+4^2\right)+4^2\left(4+4^2\right)+...+4^{22}\left(4+4^2\right)\)
\(=20\left(1+4^2+...+4^{22}\right)⋮20\)
Bài 33:
a: \(x^2-3x+2=\left(x-2\right)\left(x-1\right)\)
\(A=\left(x-3\right)^2-\left(2x+1\right)^2\)
\(=\left(x-3-2x-2\right)\left(x-3+2x+1\right)\)
\(=-\left(x+5\right)\left(3x-2\right)\)