Tìm GTLN của A= /x+4/*(2-/x+4/)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b1: x+2y=1 => x=1-2y
P=4xy=4y(1-2y)=4y-8y2
Ta có: y2>=0(với mọi x)
=>8y2>=0(với mọi x)
=>-8y2<=0(với mọi x)
=>4y-8y2<=4y(với mọi x) hay P<=4y(với mọi x)
Do đó, GTLN của P là 4y khi:y=0
Vậy GTLN của P là 0
b3: Ta có: x^4>=0(với mọi x)
=>x^4+4>=4(với mọi x)
=>x^2/(x^4+4)<=x^2/4(với mọi x) hay A<=x^2/4(với mọi x)
Do đó, GTLN của A là x^2/4 khi x=0
Vậy GTLN của A là 0 tại x=0
b4:\(M=x-2.\sqrt{x-5}\)
Ta có: \(\sqrt{x-5}\)>=0(với mọi x)
=>2.\(\sqrt{x-5}\)>=0(với mọi x)
=>-2.\(\sqrt{x-5}\)<=0(với mọi x)
=>x-2.\(\sqrt{x-5}\)<=x(với mọi x) hay M<=x(với mọi x)
Do đó, GTLN của M là x tại \(\sqrt{x-5}\)=0
x-5=0
x=0+5=5
Vậy GTLN của M là 5 tại x=5
Bài 1:thay x= 1-2y vào biểu thức P=4xy ta có:
P= 4(1-2y)y= -8\(y^2\)+4y=-8(\(y^2\)-\(\frac{y}{2}\))= -8[(\(y^2\)-2.y.\(\frac{1}{4}\)+\(\left(\frac{1}{4}\right)^2\))-\(\left(\frac{1}{4}\right)^2\)]
=-8[\(\left(y-\frac{1}{4}\right)^2\)-\(\frac{1}{16}\)]=-8.\(\left(y-\frac{1}{4}\right)^2\)+\(\frac{1}{2}\)
Ta có -8\(\left(y-\frac{1}{4}\right)^2\)\(\le\)0
=> P=-8\(\left(y-\frac{1}{4}\right)^2\)+\(\frac{1}{2}\)\(\le\)\(\frac{1}{2}\)
Vậy P đạt giá trị lớn nhất là \(\frac{1}{2}\) dấu = xảy ra khi y-\(\frac{1}{4}\)=0=> y=\(\frac{1}{4}\)
a) Sửa đề: Tìm GTNN
A = |2x - 1| - 4
Ta có:
|2x - 1| ≥ 0 với mọi x ∈ R
⇒ |2x - 1| - 4 ≥ -4 với mọi x ∈ R
Vậy GTNN của A là -4 khi x = 1/2
b) B = 1,5 - |2 - x|
Ta có:
|2 - x| ≥ 0 với mọi x ∈ R
⇒ -|2 - x| ≤ 0 với mọi x ∈ R
⇒ 1,5 - |2 - x| ≤ 1,5 với mọi x ∈ R
Vậy GTLN của B là 1,5 khi x = 2
c) C = |x - 3| ≥ 0 với mọi x ∈ R
Vậy GTNM của C là 0 khi x = 3
d) D = 10 - 4|x - 2|
Ta có:
|x - 2| ≥ 0 với mọi x ∈ R
⇒ 4|x - 2| ≥ 0 với mọi x ∈ R
⇒ -4|x - 2| ≤ 0 với mọi x ∈ R
⇒ 10 - 4|x - 2| ≤ 10 với mọi x ∈ R
Vậy GTLN của D là 10 khi x = 2
Áp dụng BĐT:\(a^2+b^2\ge2ab\)(dấu "=" xảy ra khi a=b) với a=x^2,b=1 có:
\(x^4+1\ge2x^2\Leftrightarrow x^{\text{4}}+x^2+1\ge3x^2\)
\(\Leftrightarrow\frac{x^2}{x^{\text{4}}+x^2+1}\le\frac{x^2}{3x^2}=\frac{1}{3}\)
Dấu "=" xảy ra khi \(x^2=1\Leftrightarrow x=1\)
Vậy maxA=1/3 khi x=1
\(A=\dfrac{4}{2+\sqrt{x}}\)
\(\sqrt{x}+2>=2\) với mọi x thỏa mãn ĐKXĐ
=>\(\dfrac{4}{\sqrt{x}+2}< =\dfrac{4}{2}=2\forall x\) thỏa mãn ĐKXĐ
Dấu = xảy ra khi x=0
ĐKXĐ: x ≥ 0
Để A đạt GTLN thì 2 + √x đạt giá trị nhỏ nhất
Do x ≥ 0
⇒ 2 + √x ≥ 2
⇒ 4/(2 + √x) ≤ 4/2 = 2
⇒ GTLN của A là 2 khi x = 0
ĐKXĐ: ...
\(A=\dfrac{3x^2-72x+96}{3\left(x^2-4x+4\right)}=\dfrac{28\left(x^2-4x+4\right)-\left(25x^2-40x+16\right)}{3\left(x^2-4x+4\right)}=\dfrac{28}{3}-\dfrac{1}{3}\left(\dfrac{5x-4}{x-2}\right)^2\le\dfrac{28}{3}\)
\(A_{max}=\dfrac{28}{3}\) khi \(5x-4=0\Leftrightarrow x=\dfrac{4}{5}\)
1.
$x(x+2)(x+4)(x+6)+8$
$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$
$=a(a+8)+8$ (đặt $x^2+6x=a$)
$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$
Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$
2.
$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$
$=5-(x^2+5x-6)(x^2+5x+6)$
$=5-[(x^2+5x)^2-6^2]$
$=41-(x^2+5x)^2\leq 41$
Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
\(A=4-x^2+3\)
\(=-x^2+7\le7\)
Khi x=0
\(C=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)\)
Đặt \(t=x^2+5x+4\) thì
\(=t\left(t+2\right)=t^2+2t+1-1\)
\(=\left(t+1\right)^2-1\ge-1\)
a)Vì \(|x-2|\ge0;\forall x\)
\(\Rightarrow|x-2|+5\ge0+5;\forall x\)
Hay \(A\ge5;\forall x\)
Dấu"="xảy ra \(\Leftrightarrow|x-2|=0\)
\(\Leftrightarrow x=2\)
Vậy \(A_{min}=5\)\(\Leftrightarrow x=2\)
b) Vì \(-|x+4|\le0;\forall x\)
\(\Rightarrow12-|x+4|\le12;\forall x\)
Hay \(B\le12;\forall x\)
Dấu"=" xayra \(\Leftrightarrow|x+4|=0\)
\(\Leftrightarrow x=-4\)
Vậy MAX \(B=12\)\(\Leftrightarrow x=-4\)
a, Ta có :
\(\left|x-2\right|\ge0\forall x\)
\(\Rightarrow\left|x-2\right|+5\ge5\forall x\)
Mà \(A=\left|x-2\right|+5\)
\(\Rightarrow A\ge5\forall x\)
\(\Rightarrow MinA=5\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
Vậy \(MinA=5\Leftrightarrow x=2\)
Ta có: \(A=\left|x+4\right|\left(2-\left|x+4\right|\right)=-\left(x+4\right)^2+2\left|x+4\right|\)
\(=-\left[\left(x+4\right)^2-2\left|x+4\right|+1\right]+1\)
\(=-\left(\left|x+4\right|-1\right)^2+1\le1\)
Dấu "='' xảy ra khi: \(\left|x+4\right|=1\Leftrightarrow\orbr{\begin{cases}x+4=1\\x+4=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=-5\end{cases}}\)
Vậy \(A_{Max}=1\Leftrightarrow\orbr{\begin{cases}x=-3\\x=-5\end{cases}}\)