K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2023

a: Xét ΔMAB và ΔMDC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔMAB=ΔMDC
b: Xét ΔMAC và ΔMDB có

MA=MD

\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)

MC=MB

Do đó: ΔMAC=ΔMDB

=>\(\widehat{MAC}=\widehat{MDB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AC//BD

c: ΔMAB=ΔMDC

=>\(\widehat{MBA}=\widehat{MCD}\)

Xét ΔABH vuông tại H và ΔDCK vuông tại K có

AB=DC

\(\widehat{ABH}=\widehat{DCK}\)

Do đó: ΔABH=ΔDCK

=>BH=CK

BH+HK=BK

CK+HK=CH

mà BH=CK

nen BK=CH

d: Xét tứ giác ABCE có

I là trung điểm chung của AC và BE

=>ABCE là hình bình hành

=>AB//CE và AB=CE

Ta có: AB//CE

AB//CD

CD,CE có điểm chung là C

Do đó: C,E,D thẳng hàng

Ta có: AB=EC

AB=CD

Do đó: EC=CD

mà C,E,D thẳng hàng

nên C là trung điểm của DE

a: Xét ΔAMB và ΔDMC có 

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔAMB=ΔDMC

Xét tứ giác ABDC có

M là trung điểm của AD

M là trung điểm của BC

Do đó: ABDC là hình bình hành

mà \(\widehat{BAC}=90^0\)

nên ABDC là hình chữ nhật

Suy ra: AB//DC và AB=DC; \(\widehat{ACD}=90^0\)

b:

Ta có: ABDC là hình chữ nhật

nên AD=BC

XétΔBCA và ΔDAC có 

BC=DA

CA chung

BA=DC

Do đó: ΔBCA=ΔDAC

10 tháng 1 2022

a: Xét ΔAMB và ΔDMC có 

MA=MD

AMB^=DMC^

MB=MC

Do đó: ΔAMB=ΔDMC

Xét tứ giác ABDC có

M là trung điểm của AD

M là trung điểm của BC

Do đó: ABDC là hình bình hành

mà BAC^=900

nên ABDC là hình chữ nhật

Suy ra: AB//DC và AB=DC; ACD^=900

b:

Ta có: ABDC là hình chữ nhật

nên AD=BC

XétΔBCA và ΔDAC có 

BC=DA

CA chung

BA=DC

Do đó: ΔBCA=ΔDAC

16 tháng 1

 

a) Xét ΔAMB và ΔDMC có:

\(AM=CM\) (gt) 

\(\widehat{AMB}=\widehat{DMC}\) (đối đỉnh) 

\(BM=CM\) (M là trung điểm của BC) 

\(\Rightarrow\text{Δ}AMB=\text{Δ}DMC\left(c.g.c\right)\)

b) Ta có: \(\text{Δ}AMB=\text{Δ}DMC\left(cmt\right)\)

\(\Rightarrow AB=DC\) (2 cạnh t.ứng)  

c) Ta có: \(\text{Δ}AMB=\text{Δ}DMC\left(cmt\right)\)

\(\Rightarrow\widehat{MAB}=\widehat{MDC}\) (hai góc t.ứng) 

Mà hai góc này ở vị trí so le trong 

\(\Rightarrow AB//CD\)

a,

Xét △ABC có:

BC2 = 172 = 289

AB2 + AC2 = 152 + 82 = 225 + 64 = 289

=> BC2 = AB2 + AC2

=> △ABC vuông 

░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ ░░░███░███░███░███░█░█░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ ░░░█░░░█░█░░█░░█░█░█░█░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ ░░░███░███░░█░░██░░░█░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ ░░░█░░░█░█░░█░░█░█░░█░░░░░░░░░░░░░████░░█████░░░██░ ░░░█░░░█░█░███░█░█░░█░░░░░░░░░░░░████░░█████░░░███░ ░░░░░░░░░░░░░░░░░░░░░░░░██░░░░░░████░░█████░░░████░ ░░░░░░░░░░░░░░░░░░░███████░██░░█████░██████░░██░██░ ░░░░░░░░░░░░█████████████░███░██████░█████░░░░░░██░ ░░░░░░░░░███████████████░████░██████░█████░░░░░░██░ ░░░░░░░█████████████████████░██████░██████░░░░░░██░ ░░░░░██████████████████████░███████░█████░░░░░░███░ ░░░░░█████████████████████████████░██████░░░░░████░ ░░░░████████████████████████████████████░░░░░████░░ ░░░░███████████████████████████████████░░░░█████░░░ ░░░░█████░░░░░░░░████████████████████░░░░██████░░░░ ░░░░░██░░░░░░░░░░████████████████████████████░░░░░░ ░░░░░░░░░░░░░░░░░██████████████████████████░░░░░░░░ ░░░░░░░░░░░░░░░░░░░████████████████████░░░░░░░░░░░░ ░░░░░░░░░░░░░░░░░░░░░░░█████████████░░░░░░░░░░░░░░░ ░░░░░░░░░░░░░░░░░░░░░░░████████░░░░░░░░░░░░░░░░░░░░ ░░░░░░░░░░░░░░░░░░░████████░░░░░░░░░░░░░░░░░░░░░░░░ ░░░░░░░██░░░░░░░███████░░░░░░███░███░███░█░░░░░░░░░ ░░░░░░███░░░███████░░░░░░░░░░░█░░█░█░░█░░█░░░░░░░░░ ░░░░███████████░░░░░░░░░░░░░░░█░░███░░█░░█░░░░░░░░░ ░░░████████░░░░░░░░░░░░░░░░░░░█░░█░█░░█░░█░░░░░░░░░ ░░████░░░░░░░░░░░░░░░░░░░░░░░░█░░█░█░███░███░░░░░░░ ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░

a) Xét ΔAMB và ΔDMC có

MA=MD(gt)

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)

Do đó: ΔAMB=ΔDMC(c-g-c)

26 tháng 12 2021

a.Xét ΔAMB và ΔDMC có

MA=MD

ˆAMB=ˆDMC

MB=MC

Do đó: ΔAMB=ΔDMC

b. Xét tứ giác ABDC có :

M là trung điểm của BC

M là trung điểm của AD

Do đó: ABDC là hình bình hành

Suy ra: AC//BD