Cho tử giác ABCD có diện tích bằng 120cm'. Trên cạnh AB lấy trung điểm M, trên cạnh BC lấy điểm N sao cho BN = 2NC, trên cạnh CD lấy trung điểm P, trên cạnh DA lấy điểm Q sao cho DQ = 2QA. Tính diện tích hình tứ giác MNPQ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cho hình thoi ABCD có diện tích bằng 120cm2 , tổng 2 đường chéo bằng 34cm . Tính đường cao hình thoi


MN//BD
=>d(N;BD)=d(M;BD)
\(S_{DBN}=\dfrac{1}{2}\cdot d\left(N;BD\right)\cdot BD;S_{DBM}=\dfrac{1}{2}\cdot d\left(M;BD\right)\cdot BD\)
=>\(S_{DBN}=S_{DBM}\)
mà \(S_{ABND}=S_{ADB}+S_{BDN}\)
nên \(S_{ABND}=S_{ADB}+S_{DBM}\)
\(=S_{AOD}+S_{ABO}+S_{OMD}+S_{OBM}\)
\(=S_{ADM}+S_{ABM}\)
\(=\dfrac{1}{2}\cdot\left(S_{ADC}+S_{ABC}\right)=\dfrac{1}{2}\cdot S_{ABCD}=8\left(cm^2\right)\)

thiếu đơn vị đo nên không tính được

a) Xét ΔADB vuông tại D và ΔAEC vuông tại E có
\(\widehat{BAD}\) chung
Do đó: ΔADB\(\sim\)ΔAEC(g-g)
b) Ta có: ΔADB\(\sim\)ΔAEC(cmt)
nên \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)
hay \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
Xét ΔAED và ΔACB có
\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)(cmt)
\(\widehat{A}\) chung
Do đó: ΔAED\(\sim\)ΔACB(c-g-c)
Ta có: BN+NC=BC
=>BC=2NC+NC=3NC
=>\(BN=\frac23BC\) và \(CN=\frac13\times BC\)
M là trung điểm của AB
=>\(S_{CBM}=\frac12\times S_{CBA}\)
Vì \(BN=\frac23\times BC\)
nên \(S_{MBN}=\frac23\times S_{MBC}=\frac23\times\frac12\times S_{CBA}=\frac13\times S_{CBA}\)
Ta có: AQ+QD=AD
=>AD=2QA+QA=3QA
=>\(\frac{DQ}{DA}=\frac23\) và \(AQ=\frac13\times AD\)
Ta có: P là trung điểm của CD
=>\(S_{APD}=\frac12\times S_{ADC}\)
\(DQ=\frac23\times DA\) nên \(S_{DQP}=\frac23\times S_{DPA}=\frac23\times\frac12\times S_{ADC}=\frac13\times S_{ADC}\)
=>\(S_{MBN}+S_{QDP}=\frac13\times\left(S_{BAC}+S_{DAC}\right)=\frac13\times S_{ABCD}\)
M là trung điểm của AB
=>\(S_{DMA}=\frac12\times S_{DBA}\)
Vì \(AQ=\frac13\times AD\) nên \(S_{AQM}=\frac13\times S_{AMD}=\frac13\times\frac12\times S_{DBA}=\frac16\times S_{DBA}\)
Vì P là trung điểm của CD
nên \(S_{BPC}=\frac12\times S_{BDC}\)
Vì \(CN=\frac13\times CB\)
nên \(S_{PNC}=\frac13\times S_{BPC}=\frac13\times\frac12\times S_{BDC}=\frac16\times S_{BDC}\)
=>\(S_{AQM}+S_{CNP}=\frac16\times\left(S_{ABD}+S_{BDC}\right)=\frac16\times S_{ABCD}\)
Ta có: \(S_{AQM}+S_{CPN}+S_{BMN}+S_{DQP}+S_{MNPQ}=S_{ABCD}\)
=>\(S_{ABCD}\left(\frac13+\frac16\right)+S_{MNPQ}=S_{ABCD}\)
=>\(S_{MNPQ}=S_{ABCD}-\frac12\times S_{ABCD}=\frac12\times S_{ABCD}=\frac{120}{2}=60\left(\operatorname{cm}^2\right)\)