Cho tam giác ABC có \(\widehat{B}=\widehat{C=40}^o\) Gọi Ax là tia phân giác của góc ngoài đỉnh A. chứng minh rằng Ax//BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải
= + (góc ngoài của tam giác ABC)
= 400+ 400 = 800
400.
Hai góc so le trong bằng nhau nên Ax// Bc
Theo đề ta giải được : \(\widehat{A}=100^0\)
Gọi à là tia phân giác ngoài của góc A .
\(\Rightarrow\widehat{A_2}=\widehat{A_3}=\frac{\left(180^0-100^0\right)}{2}=\frac{80^0}{2}=40^0\)
\(\Rightarrow\widehat{A_2}=\widehat{C}\left(=40^0\right)\)
Mà góc A 1 và góc C là hai góc so le trong .
=> Ax // BC ( đpcm )
Tam giác ABC có: góc B +góc C + góc BAC = 180o => 40o + 40o + BAC = 180o => góc BAC = 180o - 80o = 100o
=> góc BAy = 180o - BAC = 180o - 100o = 80o (do BAy là góc ngoài tam giác )
=> góc xAB = yAB/2 = 80o/2 = 40o (do Ax là p/g của góc yAB)
=> góc xAB = ABC (= 40o) Mà hai góc này ở vị trí SLT => Ax // BC
Cho tam giác ABC có B=C=40 độ. Gọi Ax là tia phân giác của góc ngoài ở đỉnh A. Hảy chứng minh Ax//BC
\(\widehat{BAC}=180^o-\left(\widehat{B}+\widehat{C}\right)=180^o-80^o=100^o\)
\(\widehat{yAc}=180^o-100^o=80^o\)
Mà tia Ax là tia phân giạc góc ngoài của A
\(\Rightarrow\widehat{yAx}=\widehat{xAC}=\frac{\widehat{yAc}}{2}=\frac{80^o}{2}=40^o\)
Ở vị trí so le trong => Ax//BC