K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 5 2021

1.

\(\widehat{ABC}=60^0\Rightarrow\Delta ABC\) đều

\(\Rightarrow S_{ABCD}=2S_{ABC}=2.\dfrac{a^2\sqrt{3}}{4}=\dfrac{a^2\sqrt{3}}{2}\)

Gọi O là giao điểm 2 đường chéo \(\Rightarrow SO\perp AC\Rightarrow SO\perp\left(ABCD\right)\)

\(SO=\dfrac{AC\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều)

\(V=\dfrac{1}{3}SO.S_{ABCD}=\dfrac{a^3}{4}\)

NV
14 tháng 5 2021

2.

Gọi M là trung điểm AB \(\Rightarrow SM\perp AB\Rightarrow SM\perp\left(ABCD\right)\)

\(SM=\dfrac{AB\sqrt{3}}{2}\) (trung tuyến tam giác đều)

Áp dụng định lý Pitago cho tam giác vuông MBC:

\(CM^2=BM^2+BC^2=\left(\dfrac{AB}{2}\right)^2+\left(2AB\right)^2=\dfrac{17AB^2}{4}\)

Áp dụng định lý Pitago cho tam giác vuông SMC:

\(SC^2=SM^2+CM^2\Leftrightarrow5a^2=\dfrac{3AB^2}{4}+\dfrac{17AB^2}{4}=5AB^2\)

\(\Rightarrow AB=a\Rightarrow\left\{{}\begin{matrix}AD=2a\\SM=\dfrac{a\sqrt{3}}{2}\end{matrix}\right.\)

\(V=\dfrac{1}{3}.SM.AB.AD=\dfrac{a^3\sqrt{3}}{3}\)

AH
Akai Haruma
Giáo viên
22 tháng 6 2021

Lời giải:
Lấy $H$ là trung điểm $AB$ thì do $SAB$ cân tại $S$ nên $SH\perp BH$

$BH$ là giao tuyến của $(SAB), (ABCD)$; (SAB)\perp (ABCD)$ nên $SH\perp (ABCD)$

$\Rightarrow (SC, (ABCD))=(SC, CH)=\widehat{SCH}=45^0$

$\Rightarrow SH=CH=\sqrt{BC^2+BH^2}=\sqrt{(2a)^2+(\frac{a}{2})^2}=\frac{\sqrt{17}}{2}a$
\(V_{S.ABCD}=\frac{1}{3}.SH.S_{ABCD}=\frac{1}{3}.\frac{\sqrt{17}}{2}a.a.2a=\frac{\sqrt{17}}{3}a^3\)

1, Cho hình chóp SABCD có đáy ABCD là hình vuông . Mặt bên SAB là tam giác đều nằm trong mặt phẳng vuông góc với (ABCD).CÓ mấy mặt phẳng vuông góc với (sab) 2, Cho hình chóp SABCD có đáy ABCD là hình thoi . Mặt phẳng (SAC) vuông góc (ABCD) . mệnh đề nào đúng A. (SAC) vuông góc (SBD)      b. (SBD) vuông góc (ABCD) C.(BCD) vuông góc (ACD)D.(SAB) vuông góc (SAD) 3, Cho tứ diện ABCD có AB=AC=AD và tam giác BCD vuông ở B . Trong các mặt phẳng sau , cặp...
Đọc tiếp

1, Cho hình chóp SABCD có đáy ABCD là hình vuông . Mặt bên SAB là tam giác đều nằm trong mặt phẳng vuông góc với (ABCD).CÓ mấy mặt phẳng vuông góc với (sab) 

2, Cho hình chóp SABCD có đáy ABCD là hình thoi . Mặt phẳng (SAC) vuông góc (ABCD) . mệnh đề nào đúng 

A. (SAC) vuông góc (SBD)      

b. (SBD) vuông góc (ABCD) 

C.(BCD) vuông góc (ACD)

D.(SAB) vuông góc (SAD) 

3, Cho tứ diện ABCD có AB=AC=AD và tam giác BCD vuông ở B . Trong các mặt phẳng sau , cặp nào vuông góc với nhau 

A.(ABC) và (ABD)                  B.(ABD) và (BCD) 

C. (BCD) và (ACD)                  D.(ACD) và (ABC)

4. tứ diện abcd có bcd là tam giác vuông ở b . (ABC) vuông góc (BCD) . các cạnh của tứ diện cạnh nào là đường cao 

5. Cho hình chóp SABC có đáy abc là tam giác vuông ở b với AB=3a,BC=4a. biết SA vuông góc với đáy , góc giữa (SBC) và (ABC)=60 ĐỘ . TÍNH diện tích tam giác sbc

0
NV
26 tháng 2 2023

Đề bài thiếu dữ liệu định vị điểm S (ví dụ SC bằng bao nhiêu đó) nên ko thể tính góc giữa SB và (ABCD)

6 tháng 12 2017

Phương pháp:

Công thức tính thể tích khối chóp có diện tích đáy S và chiều cao h là: V = 1 3 S h  

Cách giải:

NV
29 tháng 1

Gọi E là điểm đối xứng M qua A

\(\Rightarrow ANDE\) là hình bình hành (cặp cạnh đối AE và DN song song và bằng nhau)

\(\Rightarrow AN||DE\Rightarrow\) góc giữa AN và SD bằng góc giữa SD và DE

Do tam giác ABD đều \(\Rightarrow MD\perp AB\) \(\Rightarrow\Delta MDE\) vuông tại M

Do tam giác SAB đều \(\Rightarrow SM\perp AB\)

Mà \(\left(SAB\right)\perp\left(ABCD\right)\Rightarrow SM\perp\left(ABCD\right)\)

\(\Rightarrow\) Các tam giác SMD, SME vuông tại M

\(SM=\dfrac{AB\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{2}\) (trung tuyến tam giác SAB đều)

\(MD=\dfrac{AB\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{2}\) (trung tuyến tam giác ABD đều)

\(ME=2AM=AB=a\)

Pitago:

\(SD=\sqrt{SM^2+MD^2}=\dfrac{a\sqrt{6}}{2}\)

\(SE=\sqrt{SM^2+ME^2}=\dfrac{a\sqrt{7}}{2}\)

\(ED=\sqrt{MD^2+ME^2}=\dfrac{a\sqrt{7}}{2}\)

\(\Rightarrow cos\widehat{SDE}=\dfrac{SD^2+ED^2-SE^2}{2SD.ED}=\dfrac{\sqrt{42}}{14}\)

NV
29 tháng 1

loading...