Cho C=3-3^2+3^3-3^4+3^5-3^6+...+3^23-3^24. Chứng minh C chia hết cho 420
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Biểu thức $B$ không có GTLN bạn nhé. Chỉ có GTNN thôi.
b.
$C=(3-3^2+3^3-3^4)+(3^5-3^6+3^7-3^8)+....+(3^{21}-3^{22}+3^{23}-3^{24})$
$=(3-3^2+3^3-3^4)+3^4(3-3^2+3^3-3^4)+....+3^{20}(3-3^2+3^3-3^4)$
$=(3-3^2+3^3-3^4)(1+3^4+...+3^{20})=-60(1+3^4+...+3^{20})\vdots 60(*)$
Mặt khác:
$C=(3-3^2+3^3)-(3^4-3^5+3^6)+.....-(3^{22}-3^{23}+3^{24})$
$=3(1-3+3^2)-3^4(1-3+3^2)+...-3^{22}(1-3+3^2)$
$=(1-3+3^2)(3-3^4+...-3^{22})=7(3-3^4+...-3^{22})\vdots 7(**)$
Từ $(*); (**)$ mà $(7,60)=1$ nên $C\vdots (7.60)$ hay $C\vdots 420$
a: Sửa đề: Tìm GTNN
B=|x-2022|+|x-1|>=|x-2022+1-x|=2021
Dấu = xảy ra khi 1<=x<=2022
b: C=(3-3^2+3^3)-3^3(3-3^2+3^3)+...-3^21(3-3^2+3^3)
=21(1-3^3+3^6-...-3^21) chia hết cho 21
C=(3-3^2+3^3-3^4)+3^4(3-3^2+3^3-3^4)+...+3^20(3-3^2+3^3-3^4)
=-60(1+3^4+...+3^20) chia hết cho 60
=>A chia hết cho BCNN(21;60)=420
Lời giải:
$A=(4+4^2)+(4^3+4^4)+....+(4^{23}+4^{24})$
$=(4+4^2)+4^2(4+4^2)+....+4^{22}(4+4^2)$
$=(4+4^2)(1+4^2+...+4^{22})$
$=20(1+4^2+...+4^{22})\vdots 20$
----------------------------
$A=(4+4^2+4^3)+(4^4+4^5+4^6)+....+(4^{22}+4^{23}+4^{24})$
$=4(1+4+4^2)+4^4(1+4+4^2)+....+4^{22}(1+4+4^2)$
$=(1+4+4^2)(4+4^4+...+4^{22})$
$=21(4+4^4+....+4^{22})\vdots 21$
----------------------
Vậy $A\vdots 20; A\vdots 21$. Mà $(20,21)=1$ nên $A\vdots (20.21)$ hay $A\vdots 420$
Giải:
a) \(M=21^9+21^8+21^7+...+21+1\)
Do \(21^n\) luôn có tận cùng là 1
\(\Rightarrow M=21^9+21^8+21^7+...+21+1\)
Tân cùng của M là:
\(1+1+1+1+1+1+1+1+1+1=10\) tận cùng là 0
\(\Rightarrow M⋮10\)
\(\Leftrightarrow M⋮2;5\)
b) \(N=6+6^2+6^3+...+6^{2020}\)
\(N=6.\left(1+6\right)+6^3.\left(1+6\right)+...+6^{2019}.\left(1+6\right)\)
\(N=6.7+6^3.7+...+6^{2019}.7\)
\(N=7.\left(6+6^3+...+6^{2019}\right)⋮7\)
\(\Rightarrow N⋮7\)
Ta thấy: \(N=6+6^2+6^3+...+6^{2020}⋮6\)
Mà \(6⋮̸9\)
\(\Rightarrow N⋮̸9\)
c) \(P=4+4^2+4^3+...+4^{23}+4^{24}\)
\(P=1.\left(4+4^2\right)+4^2.\left(4+4^2\right)+...+4^{20}.\left(4+4^2\right)+4^{22}.\left(4+4^2\right)\)
\(P=1.20+4^2.20+...+4^{20}.20+4^{22}.20\)
\(P=20.\left(1+4^2+...+4^{20}+4^{22}\right)⋮20\)
\(\Rightarrow P⋮20\)
\(P=4+4^2+4^3+...+4^{23}+4^{24}\)
\(P=4.\left(1+4+4^2\right)+...+4^{22}.\left(1+4+4^2\right)\)
\(P=4.21+...+4^{22}.21\)
\(P=21.\left(4+...+4^{22}\right)⋮21\)
\(\Rightarrow P⋮21\)
d) \(Q=6+6^2+6^3+...+6^{99}\)
\(Q=6.\left(1+6+6^2\right)+...+6^{97}.\left(1+6+6^2\right)\)
\(Q=6.43+...+6^{97}.43\)
\(Q=43.\left(6+...+6^{97}\right)⋮43\)
\(\Rightarrow Q⋮43\)
Chúc bạn học tốt!
Ta có
H=4+4^2+...+4^24
H=(4+4^2) + (4^3+4^4)+...+(4^23+4^24)
<=>H=20+4^2.20+...+4^22.20
<=>h=20(1+4^2+...+4^22) chia hết cho 20
Ta có
H=4 +4^2+...+4^24
<=>H=(4+4^2+4^3) +(4^4+4^5+4^6)+....+(4^22+4^23+4^24)
<=>H=4.21+4^4.21+....+4^22 .21
<=>H=21(4+4^4+...+4^22) chia hết cho 21
H=4+4^2+...+4^2
<=>h=(4+4^2+4^3+4^4+4^5+4^6)+....+(4^19+4^20+4^21+4^22+4^23+4^24)
=5420 + ...+4^18.5420
=13.420 +....+13.420.4^18
chia hết cho 420
nhớ tick mình nha,cảm ơn nhiều
Ta có:
A = 4 + 42 + 43 +......+ 423+ 424
= (4 + 42)) + (43 +44)......+ (423+ 424)
=(4 + 42).1+(4 + 42).42+...+(4 + 42).422
=20.(1+42+...+422) chia hết cho 20
Ta lại có:
A = 4 + 42 + 43 +......+ 423+ 424
=(4 + 42 + 43)+...+(422+423+424)
=(4 + 42 + 43).1+...+(4 + 42 + 43).421
=21.(1+...+421) chia hết cho 21
Vì A chia hết cho 21 và 20 , mà ƯCLN(20;21)=1 => A chia hết cho 20 và 21 tức là A chia hết cho 20.21=420
Vậy...
A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + (4^7 + 4^8 + 4^9 + 4^10 + 4^11 + 4^12) + (4^13 + 4^14 + 4^15 + 4^16 + 4^17 + 4^18) + (4^19 + 4^20 + 4^21 + 4^22 + 4^23 + 4^24)
A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^6(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^12(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^18(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6)
A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6).(1+4^6+4^12+4^18)
A = 5460.(1+4^6+4^12+4^18)
A = 420 . 13(1+4^6+4^12+4^18) => A chia hết cho 420
A = 20.21.13(1+4^6+4^12+4^18) => A chia hết cho 20 ; 21
\(C=3-3^2+3^3-3^4+3^5-3^6+...-3^{22}+3^{23}-3^{24}\)
\(=\left(3-3^2+3^3\right)-\left(3^4-3^5+3^6\right)+...-\left(3^{22}-3^{23}+3^{24}\right)\)
\(=3\left(1-3+3^2\right)-3^4\left(1-3+3^2\right)+...-3^{22}\left(1-3+3^2\right)\)
\(=7\left(3-3^4+...-3^{22}\right)⋮7\)
\(C=3-3^2+3^3-3^4+3^5-3^6+...-3^{22}+3^{23}-3^{24}\)
\(=\left(3-3^2+3^3-3^4\right)+\left(3^5-3^6+3^7-3^8\right)+...+\left(3^{21}-3^{22}+3^{23}-3^{24}\right)\)
\(=3\left(1-3+3^2-3^3\right)+3^5\left(1-3+3^2-3^3\right)+...+3^{21}\left(1-3+3^2-3^3\right)\)
\(=-20\cdot\left(3+3^5+...+3^{21}\right)\)
\(=-60\cdot\left(1+3^4+...+3^{20}\right)⋮60\)
\(C⋮60;C⋮7\)
mà ƯCLN(60;7)=1
nên C chia hết cho 60*7=420
Nỏ biết hỏi lắm hỏi cấy lò tôn