\(cho\)\(a,b\in Z^+\)và \(A=\frac{a^2+b^2}{ab+1}\)là số nguyên .
CM A là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho a,b là các số nguyên dương và A =\(\frac{a^2+b^2}{ab+1}\)là số nguyên .cmr A là số chính phương.
Em không chắc đâu ạ.
\(PT\Leftrightarrow a^2+b^2+1-2ab-2a-2b=0\)
\(\Leftrightarrow\left(a-b\right)^2-2\left(a+b\right)+1=0\)
Pt có nghiệm \(\Leftrightarrow\Delta'=\left(a+b\right)^2-\left(a^2-2ab+b^2\right)\ge0\)
\(\Leftrightarrow4ab\ge0\Leftrightarrow ab\ge0\Leftrightarrow\orbr{\begin{cases}a=0\\b=0\end{cases}}\)
Với a = 0 thì \(b^2-2b+1=0\Leftrightarrow\left(b-1\right)^2=0\Leftrightarrow b=1\)
Khi đó a,b là hai số chính phương liên tiếp (1)
Tương tự ta cũng có với b = 0 thì a = 1.
Khi đó a,b là hai số chính phương liên tiếp (2)
Từ (1) và (2) ta có đpcm.
Đặt \(k=\frac{a^2+b^2}{ab+1}\)\(\left(k\inℤ\right)\)
Giả sử k không là số chính phương
Cố định số nguyên dương k,sẽ tồn tại cặp (a,b) . Ta kí hiệu
\(S=\left(\left(a,b\right)\in N\times N|\frac{a^2+b^2}{ab+1}=k\right)\)
Theo nguyên lí cực hạn thì các cặp thuộc S tồn tại (a,b) sao cho a+b đạt min
Giả sử \(a\ge b>0\)cố định b ta còn số nữa khác a theo phương trình \(k=\frac{x+b^2}{xb+1}\)
\(\Leftrightarrow x^2-kbx+b^2-k=0\)phương trình có nghiệm a
Theo \(VIET:\hept{\begin{cases}a+x_2=kb\\a.x_2=b^2-k\end{cases}}\)
\(\Rightarrow x_2=kb-a=\frac{b^2-k}{a}\)
Dễ thấy x2 nguyên
Nếu x2<0 thì \(x_2^2-kbx_2+b^2-k\ge x^2_2+k+b^2-k>0\)(vô lí) \(\Rightarrow x_2\ge0\)do đó \(\left(x_2,b\right)\in S\)
Do \(a\ge b>0\Rightarrow x_2=\frac{b^2-k}{a}< \frac{a^2-k}{a}< a\)
\(\Rightarrow x_2+b< a+b\)(trái với a+b đạt min)
=> k là số chính phương (đpcm)
Xong rồi đấy,bạn tinck cho mình với nhé
\(\dfrac{a}{b}-1=\dfrac{a^2+n^2}{b^2+n^2}-1\Rightarrow\dfrac{a-b}{b}=\dfrac{\left(a-b\right)\left(a+b\right)}{b^2+n^2}\)
TH1: \(a=b\) thì \(ab=a^2\) là SCP
TH2: \(a\ne b\Rightarrow\dfrac{1}{b}=\dfrac{a+b}{b^2+n^2}\)
\(\Rightarrow b^2+n^2=b\left(a+b\right)\Rightarrow ab=n^2\) là SCP
câu 2 :
ab+ bc + ca = 2015
=> 2015 +a^2 = a^2 + ab + bc + ca
=> 2015 + a^2 = a(a+b ) + c( a + b ) = ( a + c )( a + b)
Tương tự : 2015+b^2 = ( b + c )(b +a )
2015 + c^2 = ( c + a )(c + b ) thay vào ta có :
( 2015 + a^2)(2015 + b^2 ) (2015 +c^2) = (a + c )(a+b)(b+c)(b+a)(c+a)(c+b) = [(a+c)(a+b)(b+c) ]^2 là số chính phương
Câu 1 ) :
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2015}\Rightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{2015}-\frac{1}{z}=\frac{z-2015}{2015z}\)
=> \(\frac{x+y}{xy}=\frac{z-2015}{2015z}\)
=> \(2015z\left(x+y\right)=\left(z-2015\right)xy\)
=> \(2015z\left(2015-z\right)-\left(z-2015\right)xy\) = 0
=> \(\left(2015-z\right)\left(2015z-xy\right)\)= 0
=> \(\left(2015-z\right)\left(2015\left(2015-x-y\right)-xy\right)=0\)
=> \(\left(2015-z\right)\left(2015^2-2015x-2015y-xy\right)=0\)
=> \(\left(2015-z\right)\left(2015-x\right)\left(2015-y\right)=0\)
=> 2015 - z = 0 hoặc 2015 -x = 0 hoặc 2015 - y = 0
=> z = 2015 hoặc x= 2015 hoặc y = 2015
Vậy trong ba số có ít nhất 1 số bằng 2015