3x + 4y ÷ 17
CMR 5x + y chia hết cho 17
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(5x+2y⋮17\)
\(\Leftrightarrow5x+2y+17\left(x+y\right)⋮17\)
\(\Leftrightarrow22x+19y⋮17\)
\(\Leftrightarrow\left(22x+19y\right)-\left(5x+2y\right)6⋮17\)
\(\Leftrightarrow-8x+7y⋮17\)
\(\Leftrightarrow9x+7y⋮17\)( đpcm)
5x+47y chia hết cho 17
<=>5x+30y +17y chia hết cho 17
mà 17y chia hết cho 17
=> 5x+30y chia hết cho 17
<=>5(x+6y) chia hết cho 17
mà (5,17)=1
nên x=6y chia hết cho 17
Đúng thì Li.ke nha bạn
5x+47y chia hết cho 17
<=>5x+30y +17y chia hết cho 17
mà 17y chia hết cho 17
=> 5x+30y chia hết cho 17
<=>5(x+6y) chia hết cho 17
mà (5,17)=1
nên x=6y chia hết cho 17
Đúng thì Li.ke nha bạ
1 giải
Ta có 17 chia hết cho 17
suy ra 17a+3a+b chia hết cho 17
suy ra 20a+2b chia hết cho 17
rút gọn cho 2
suy ra 10a+b chia hét cho 17
2 giải
* nếu a-5b chia hết cho 17 thì 10a + b chia hết cho 17
vì a-5b chia hết cho 17 nên 10(a-5b) chia hết cho 17 => 10a-50b chia hết cho 17 => 10a-50b+51b chia hết cho 17 hay 10a + b chia hết cho 17 (1) *
nếu 10a + b chia hết cho 17 thì a-5b chia hết cho 17
vì 10a+b chia hết cho 17 nên 10a + b - 51b chia hết cho 17 => 10a - 50b chia hết cho 17 => 10(a-5) chia hết cho 17 mà (10;17)=1 nên a-5b chia hết cho 17 (2)
Từ (1) và (2) suy ra điều phải chứng minh
3 bó tay
Câu trả lời hay nhất: + ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60
Vì \(3x^2-7y⋮23\Leftrightarrow\left\{{}\begin{matrix}3x^2⋮23\\7y⋮23\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2⋮23\\y⋮23\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x^2⋮23\\4y⋮23\end{matrix}\right.\)
\(\Rightarrow5x^2-4y⋮23\)
Ta có: (3x+4y)\(⋮\)17
=> 4(3x+4y)\(⋮\)17
=>(12x+16y)\(⋮\) 17
=> (17x+17y)-(12x+16y) \(⋮\) 17
=>5x+y \(⋮\) 17
=> đpcm