Cho trước một số điểm trong đó không có 3 điểm nào thẳng hàng . Vẽ các đường thẳng đi qua các cấp điểm . Biết tổng số đường thẳng vẽ được là 105 . H ỏi đã cho trước bao nhiêu điểm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số đoạn thẳng là a
=> a.(a-1): 2 = 105
a(a-1) = 105 . 2
a(a-1) = 210 = 14 . 15
=> a = 15
Vậy đã cho trước 15 điểm
Gọi số đoạn thẳng là a
=> \(\frac{a.\left(a-1\right)}{2}\)= 105
a(a-1) = 105 . 2
a(a-1) = 210
a(a-1) = 15.14
=> a = 15
Vậy đã cho trước 15 điểm
mk đánh máy hơi chậm , bn thông cảm
Gọi số điểm cho trước là a. Ta có:
ax(a-1):2=105
=> ax(a-1)=210=14x15
=>a=15
Vậy cho trước 15 điểm.
Gọi số điểm là n
Ta có:n.(n-1):2=28
n.(n-1)= 56=8.7
=>n=8.
Vậy số điểm cho trước là 8.
Tick mình nha!
Gọi số điểm cần tìm là n .
Khi đó, từ điểm thứ nhất ta kẻ đc n−1 đường thẳng
Điểm thứ hai kẻ đc n−2 đường thẳng (do đã kẻ 1 đường thẳng với điểm thứ nhất)
Điểm thứ ba kẻ đc n−3 đường thẳng
...
Điểm thứ n−1 kẻ đc 1 đường thẳng.
Do đó tổng số đường thẳng là
1+2+⋯+(n−1)=55
Ta lại có
\(1+2+...+\left(n-1\right)=\frac{n\left(n-1\right)}{2}\)
Suy ra \(\frac{n\left(n-1\right)}{2}=55\)
\(\Leftrightarrow n\left(n-1\right)=110\)
\(\Leftrightarrow n\left(n-1\right)=11.10\)
Do n là số nguyên nên ta suy ra n=11 .
Vậy có 11 điểm.
Đáp án là D
Gọi số điểm cần tìm là n (điểm) (n ∈ N*)
Ta gọi tên các điểm là A1, A2, ..., An
• Qua điểm A1 và n-1 điểm còn lại ta vẽ được n-1 đường thẳng.
• Qua điểm A2 và n-1 điểm còn lại ta vẽ được n-1 đường thẳng.
• …
• Qua điểm An và n-1 điểm còn lại ta vẽ được n-1 đường thẳng.
Do đó có n.(n-1) đường thẳng.
Tuy nhiên mỗi đường thẳng được tính 2 lần nên số đường thẳng được tạo thành là: n.(n-1):2 (đường thẳng)
Theo bài ra:
n.(n-1):2 = 21
⇔ n.(n-1) = 21.2
⇔ n.(n-1) = 42 = 6.7
Vậy n = 7
Gọi số đoạn thẳng là : n
\(\Rightarrow\frac{n\left(n-1\right)}{2}=105\)
\(n\left(n-1\right)=105.2\)
\(n\left(n-1\right)=210\)
\(n\left(n-1\right)=15.14\)
\(\Rightarrow n=15\)
Vậy số điểm cho trước là 15
gọi số đoạn thẳng là a
ax(a-1):2=105
a(a-1)=210
a(a-1)=1514
a=15