Cho đường tròn (O;R) dây AB khác đường kính. Qua O vẽ đường thẳng vuông góc với AB tại H, cắt tiếp tuyến tại A của đường tròn ở O
a) CM: CB là tiếp tuyến của đường tròn (O)
b) kẻ đường thẳng qua A song song với CO cắt đường tròn (O) tại D. Vẽ AK vuông góc với BD. CM: 3 điểm BOD thẳng hàng và tam giác AKD đồng dạn với tam giác CAO
c) Đường thẳng CO cắt (O) tại hai điểm M và N, (M nằm giữa C và N). CM: MC.NH=MH.NC
a: Sửa đề: cắt tiếp tuyến tại A của đường tròn ở C
ΔOAB cân tại O
mà OC là đường cao
nên OC là phân giác của góc AOB
Xét ΔOAC và ΔOBC có
OA=OB
\(\widehat{AOC}=\widehat{BOC}\)
OC chung
Do đó: ΔOAC=ΔOBC
=>\(\widehat{OAC}=\widehat{OBC}=90^0\)
=>CB là tiếp tuyến của (O)
b:ΔOAC=ΔOBC
=>CB=CA
=>C nằm trên đường trung trực của AB(1)
OA=OB
=>O nằm trên đường trung trực của AB(2)
từ (1) và (2) suy ra OC là đường trung trực của BA
=>OC\(\perp\)AB
mà OC//AD
nên AB\(\perp\)AD
=>ΔABD vuông tại A
Ta có: ΔABD vuông tại A
=>ΔABD nội tiếp đường tròn đường kính DB
mà ΔABD nội tiếp (O)
nên O là trung điểm của DB
=>D,O,B thẳng hàng
Xét ΔAKD vuông tại K và ΔCAO vuông tại A có
\(\widehat{ADK}=\widehat{COA}\)(hai góc so le trong, AD//CO)
Do đó: ΔAKD\(\sim\)ΔCAO