K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2023

\(\left(\dfrac{1}{2}\right)^x+\left(\dfrac{1}{2}\right)^{x+2}=\dfrac{1}{128}\\ \left(\dfrac{1}{2}\right)^x.\left[1+\left(\dfrac{1}{2}\right)^2\right]=\dfrac{1}{128}\\ \left(\dfrac{1}{2}\right)^x.\dfrac{5}{4}=\dfrac{1}{128}\\ \left(\dfrac{1}{2}\right)^x=\dfrac{1}{128}:\dfrac{5}{4}=\dfrac{1}{128}.\dfrac{4}{5}=\dfrac{4}{640}=\dfrac{1}{160}\)

Thầy thấy số lẻ quá....

`#3107.101107`

\(\left(\dfrac{1}{2}\right)^x+\left(\dfrac{1}{2}\right)^{x+2}=\dfrac{1}{128}\)

\(\Rightarrow\left(\dfrac{1}{2}\right)^x\cdot\left[1+\left(\dfrac{1}{2}\right)^2\right]=\dfrac{1}{128}\)

\(\Rightarrow\left(\dfrac{1}{2}\right)^x\cdot\left(1+\dfrac{1}{4}\right)=\dfrac{1}{128}\)

\(\Rightarrow\left(\dfrac{1}{2}\right)^x\cdot\dfrac{5}{4}=\dfrac{1}{128}\)

\(\Rightarrow\left(\dfrac{1}{2}\right)^x=\dfrac{1}{128}\div\dfrac{5}{4}\)

\(\Rightarrow\left(\dfrac{1}{2}\right)^x=\dfrac{1}{160}\)

Bạn xem lại đề.

a: =>1+3x-6=-x+3

=>3x-5=-x+3

=>4x=8

=>x=2(loại)

b: \(\Leftrightarrow\dfrac{3\left(x-3\right)+2\left(x-2\right)}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}=\dfrac{x-1}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}\)

=>3x-9+2x-4=x-1

=>5x-13=x-1

=>4x=12

=>x=3(loại)

c: =>x^2-2x+4+x^3+8=12

=>x^3+x^2-2x=0

=>x(x^2+x-2)=0

=>x(x+2)(x-1)=0

=>x=0 hoặc x=1

2 tháng 2 2023

tks yeu

12 tháng 8 2021

đúng

16 tháng 12 2022

a: \(x=\left(-\dfrac{2}{3}\right)^5:\left(-\dfrac{2}{3}\right)^2=\left(-\dfrac{2}{3}\right)^3=-\dfrac{8}{27}\)

b: =>x-1/2=1/3

=>x=5/6

c: =>2/3x-1=0 hoặc 3/4x+1/2=0

=>x=3/2 hoặc x=-1/2:3/4=-1/2*4/3=-4/6=-2/3

d =>4/9:x=10/3:9/4=10/3*4/9=40/27

=>x=4/9:40/27=4/9*27/40=108/360=3/10

b: \(=\left[\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\dfrac{x+1-3x^2-3x}{3x}\right]\cdot\dfrac{x}{x+1}\)

\(=\left(\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\dfrac{-3x^2-2x+1}{3x}\right)\cdot\dfrac{x}{x+1}\)

\(=\dfrac{2x+2+6x^2+4x-2}{3x\left(x+1\right)}\cdot\dfrac{x}{x+1}\)

\(=\dfrac{6x^2+6x}{3\left(x+1\right)}\cdot\dfrac{1}{x+1}\)

\(=\dfrac{6x\left(x+1\right)}{3\left(x+1\right)^2}=\dfrac{2x}{x+1}\)

c: \(VT=\left[\dfrac{2}{\left(x+1\right)^3}\cdot\dfrac{x+1}{x}+\dfrac{1}{\left(x+1\right)^2}\cdot\dfrac{1+x^2}{x^2}\right]\cdot\dfrac{x^3}{x-1}\)

\(=\left(\dfrac{2}{x\left(x+1\right)^2}+\dfrac{x^2+1}{x^2\cdot\left(x+1\right)^2}\right)\cdot\dfrac{x^3}{x-1}\)

\(=\dfrac{2x+x^2+1}{x^2\cdot\left(x+1\right)^2}\cdot\dfrac{x^3}{x-1}\)

\(=\dfrac{\left(x+1\right)^2}{\left(x+1\right)^2}\cdot\dfrac{x}{x-1}=\dfrac{x}{x-1}\)

13 tháng 12 2021

\(\left(1\right)=\dfrac{y}{x\left(2x-y\right)}-\dfrac{4x}{y\left(2x-y\right)}=\dfrac{y^2-4x^2}{xy\left(2x-y\right)}=\dfrac{-\left(y-2x\right)\left(y+2x\right)}{xy\left(y-2x\right)}=\dfrac{-y-2x}{xy}\\ \left(2\right)=\dfrac{x^2-4+3x+6+x-14}{\left(x+2\right)^2\left(x-2\right)}=\dfrac{x^2+4x-12}{\left(x+2\right)^2\left(x-2\right)}=\dfrac{\left(x-2\right)\left(x+6\right)}{\left(x+2\right)^2\left(x-2\right)}=\dfrac{x+6}{\left(x+2\right)^2}\\ \left(3\right)=\dfrac{4\left(x+2\right)}{\left(x+2\right)\left(4x+7\right)}=\dfrac{4}{4x+7}\\ \left(4\right)=\dfrac{4x^2+15x+4+4x+7+1}{\left(x+2\right)\left(x+3\right)\left(4x+7\right)}=\dfrac{4x^2+19x+12}{\left(x+2\right)\left(x+3\right)\left(4x+7\right)}\)

11 tháng 3 2017

a)Ta thấy:

\(\dfrac{1}{x}-\dfrac{1}{x+a}=\dfrac{x+a}{x\left(x+a\right)}-\dfrac{x}{x\left(x+a\right)}\)

\(=\dfrac{\left(x+a\right)-x}{x\left(x+a\right)}\)

\(=\dfrac{a}{x\left(x+a\right)}\)

\(\Rightarrowđpcm\)

b)Ta thấy:

\(\dfrac{1}{x\left(x+1\right)}-\dfrac{1}{\left(x+1\right)\left(x+2\right)}\)

\(=\dfrac{\left(x+1\right)\left(x+2\right)}{x\left(x+1\right)^2\left(x+2\right)}-\dfrac{x\left(x+1\right)}{x\left(x+1\right)^2\left(x+2\right)}\)

\(=\dfrac{x+2}{x\left(x+1\right)\left(x+2\right)}-\dfrac{x}{x\left(x+1\right)\left(x+2\right)}\)

\(=\dfrac{\left(x+2\right)-x}{x\left(x+1\right)\left(x+2\right)}=\dfrac{2}{x\left(x+1\right)\left(x+2\right)}\Rightarrowđpcm\)

c)Ta thấy:

\(\dfrac{1}{x\left(x+1\right)\left(x+2\right)}-\dfrac{1}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)

\(=\dfrac{\left(x+1\right)\left(x+2\right)\left(x+3\right)}{x\left(x+1\right)^2\left(x+2\right)^2\left(x+3\right)}-\dfrac{x\left(x+1\right)\left(x+2\right)}{x\left(x+1\right)^2\left(x+2\right)^2\left(x+3\right)}=\dfrac{x+3}{x\left(x+1\right)\left(x+2\right)\left(x+3\right)}-\dfrac{x}{x\left(x+1\right)\left(x+2\right)\left(x+3\right)}=\dfrac{x+3-x}{x\left(x+1\right)\left(x+2\right)\left(x+3\right)}=\dfrac{3}{x\left(x+1\right)\left(x+2\right)\left(x+3\right)}\Rightarrowđpcm\)

11 tháng 3 2017

a/ \(\dfrac{1}{x}-\dfrac{1}{x+a}=\dfrac{a}{x\left(x+a\right)}\)

Ta có: \(\dfrac{1}{x}-\dfrac{1}{x+a}=\dfrac{x+a}{x\left(x+a\right)}-\dfrac{x}{x\left(x+a\right)}\)

\(=\dfrac{\left(x-x\right)+a}{x\left(x+a\right)}\) hay \(\dfrac{a}{x\left(x+a\right)}\)

\(\Rightarrow\dfrac{1}{x}-\dfrac{1}{x+a}=\dfrac{a}{x\left(x+a\right)}\left(đpcm\right)\)

25 tháng 5 2022
14 tháng 1 2021

Ta có \(\left(x-\dfrac{1}{x}\right):\left(x+\dfrac{1}{x}\right)=\dfrac{1}{2}\Leftrightarrow\dfrac{x^2-1}{x^2+1}=\dfrac{1}{2}\Leftrightarrow x^2=3\).

Do đó: \(\left(x^2-\dfrac{1}{x^2}\right):\left(x^2+\dfrac{1}{x^2}\right)=\dfrac{3-\dfrac{1}{3}}{3+\dfrac{1}{3}}=\dfrac{8}{10}=\dfrac{4}{5}\).