Em cảm ơn ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách làm ngắn gọn: \(5=\dfrac{5\left(x-1\right)}{x-1}=\dfrac{5x-5}{x-1}=\dfrac{5x+5-10}{x-1}\)
Do đó chọn \(f\left(x\right)=5x+5\) thế vào nhanh chóng tính ra kết quả giới hạn
Còn cách khác phức tạp hơn (có thể sử dụng cho tự luận):
Do \(\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-10}{x-1}=5\) hữu hạn nên \(f\left(x\right)-10=0\) có nghiệm \(x=1\)
\(\Rightarrow f\left(1\right)-10=0\Rightarrow f\left(1\right)=10\)
Do đó:
\(\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-10}{\left(\sqrt{x}-1\right)\left(\sqrt{4f\left(x\right)+9}+3\right)}=\lim\limits_{x\rightarrow1}\dfrac{\left[f\left(x\right)-10\right]\left(\sqrt{x}+1\right)}{\left(x-1\right)\left(\sqrt{4f\left(x\right)+9}+3\right)}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-10}{x-1}.\dfrac{\sqrt{x}+1}{\sqrt{4f\left(x\right)+9}+3}=5.\dfrac{1+1}{\sqrt{4f\left(1\right)+9}+3}=5.\dfrac{2}{\sqrt{4.10+9}+3}=...\)
Bài 4
a) Do Cx // AB
⇒ ∠BCx = ∠ABC = 45⁰ (so le trong)
b) Do AB ⊥ AE
DE ⊥ AE
⇒ AB // DE
Mà Cx // AB
⇒ Cx // DE
c) Do Cx // DE
⇒ ∠DCx = ∠CDE = 60⁰ (so le trong)
⇒ ∠BCD = ∠BCx + ∠DCx
= 45⁰ + 60⁰
= 105⁰
Ư(39)={1;3;13;39;-1;-3;-13;-39}
Trên là tất cả các ước chưa học số âm thì chỉ viết mấy số ko có dấu " - " thôi
a)\(R_1//R_2\Rightarrow R_{12}=\dfrac{R_1\cdot R_2}{R_1+R_2}=\dfrac{60\cdot40}{60+40}=24\Omega\)
\(I=\dfrac{U}{R_{tđ}}=\dfrac{12}{24}=0,5A\)
b)\(U_1=U_2=U=12V\)
\(P_1=\dfrac{U_1^2}{R_1}=\dfrac{12^2}{60}=2,4W\)
\(P_2=\dfrac{U_2^2}{R_2}=\dfrac{12^2}{40}=3,6W\)
c)CTM mới: \(R_3nt(R_1//R_2)\)
\(I'=\dfrac{I}{2}=\dfrac{0,5}{2}=0,25A\)
\(R_{tđ}=\dfrac{U}{I'}=\dfrac{12}{0,25}=48\Omega\)
\(R_3=R_{tđ}-R_{12}=48-24=24\Omega\)
Từ đề bài ta suy ra tất cả các mặt bên của hộp đều là hình thoi (được ghép từ 2 tam giác đều)
\(\Rightarrow A'D=A'B=A'A=a\Rightarrow\) hình chiếu vuông góc của A' lên (ABCD) trùng trọng tâm E của tam giác ABD
\(\widehat{DBE}=\dfrac{1}{2}.60^0=30^0\Rightarrow\widehat{CBE}=\widehat{CBD}+\widehat{DBE}=60^0+30^0=90^0\)
\(\Rightarrow BC\perp BE\)
Mà \(A'E\perp\left(ABCD\right)\Rightarrow A'E\perp BC\)
\(\Rightarrow BC\perp\left(A'BE\right)\Rightarrow BC\perp A'B\)
\(\Rightarrow B'C'\perp A'B\)
\(AE=\dfrac{2}{3}.\dfrac{a\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{3}\Rightarrow A'E=\sqrt{A'A^2-AE^2}=\dfrac{a\sqrt{6}}{3}\)
Qua C' dựng đường thẳng song song A'E cắt AC tại F \(\Rightarrow C'F=A'E=\dfrac{a\sqrt{6}}{3}\)
\(CF=AE=\dfrac{a\sqrt{3}}{3}\) ; \(AC=2.\dfrac{a\sqrt{3}}{2}=a\sqrt{3}\Rightarrow AF=AC+CF=\dfrac{4a\sqrt{3}}{3}\)
\(\Rightarrow AC'=\sqrt{AF^2+C'F^2}=a\sqrt{6}\)
\(CP=\dfrac{1}{3}CC'\) ; \(CN=\dfrac{1}{3}BC\)
Nối PN kéo dài cắt BB' tại J
Talet: \(\dfrac{CP}{BJ}=\dfrac{CN}{NB}=\dfrac{1}{2}\Rightarrow BJ=2CP=\dfrac{2a}{3}\Rightarrow\dfrac{BJ}{B'J}=\dfrac{\dfrac{2a}{3}}{a+\dfrac{2a}{3}}=\dfrac{2}{5}\)
Nối JM cắt A'B' kéo dài tại K
Talet: \(\dfrac{BM}{B'K}=\dfrac{BJ}{B'J}=\dfrac{2}{5}\Rightarrow B'K=\dfrac{5BM}{2}=\dfrac{5a}{4}\)
Nối MN cắt BD tại H và cắt CD tại G
Talet: \(\dfrac{CG}{BM}=\dfrac{CN}{BN}=\dfrac{1}{2}\Rightarrow CG=\dfrac{1}{2}BM=\dfrac{a}{4}\Rightarrow DG=a+\dfrac{a}{4}=\dfrac{5a}{4}\)
Talet: \(\dfrac{BH}{DH}=\dfrac{BM}{DG}=\dfrac{a\div2}{5a\div4}=\dfrac{2}{5}\) (1)
Nối GP cắt C'D' tại Q
Talet: \(\dfrac{CG}{C'Q}=\dfrac{CP}{C'P}=\dfrac{1}{2}\Rightarrow C'Q=2CG=\dfrac{a}{2}\)
Nối QK cắt B'D' tại L
Talet: \(\dfrac{D'L}{B'L}=\dfrac{D'Q}{B'K}=\dfrac{a\div2}{5a\div4}=\dfrac{2}{5}\) (2)
(1);(2) \(\Rightarrow D'L=BH\) (do \(BD=B'D'\))
Nối HL cắt BD' tại I
Talet: \(\dfrac{D'I}{IB}=\dfrac{D'L}{BH}=1\)
Gọi F là giao điểm QK và A'D', O là giao điểm JK và A'A
Ta đồng thời suy ra luôn NPQFOM là thiết diện của (MNP) và chóp
Phần ĐS:
1. Đ
2. S
3. Đ
4. $=(-98)(-97)(-96)....(-1).0.1.2...9=0$
5. $a(-b)=a(-1).b=(-a).b=b(-a)$
6. $98.97=9506$
7. $a(-1)+a=-a+a=0$
8. S.
Bài 1:
a. $x-2x+3x-4x+5x-6x=x(1-2+3-4+5-6)$
$=x(-3)=-3x$
b. $x^2+3x^2-4x^2-5x^2$
$=x^2(1+3-4-5)=-5x^2$
c. $abc-3abc-2abc=abc(1-3-2)=abc(-4)=-4abc$
d. $9(x+2)-8(x+2)+(x+2)$
$=(x+2)(9-8+1)=2(x+2)$