Cho đường thẳng
(d1):y=2x+4
(d2):y=\(\dfrac{-1}{2}\)x+1
a)Vẽ các đường thẳng d1,d2 trên cùng 1 hệ trục tọa độ
b) d1cắt Ox tại A,cắt Oy tại B.d2 cắt Ox tại C,cắt Oy lại D.d1 cắt d2 tại M.Chứng minh tam giác MAC vuông tại A
c)Tính diện tích tam giác MAC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 2*(-1/2)=-1
nên (d1) vuông góc với (d2)
=>ΔMAC vuông tại M
a)(d1) vuông góc với (d2) tại M (vì tích hệ số góc của 2 đường thẳng a
\(\times\)a'=2\(\times\)\(-\dfrac{1}{2}\)=-1
vậy tam giác MAC vuông tại M
b)hoành độ M là nghiệm của phương trình:
2x+4=\(-\dfrac{1}{2}\)x+1
<=>2x+\(\dfrac{1}{2}\)x=1-4
<=>\(\dfrac{5}{2}\)x =-3
<=> x=\(\dfrac{-6}{5}\)
=> Y=2\(\times\)\(\dfrac{-6}{5}\)+4=\(\dfrac{8}{5}\)
AC=4(vẽ sơ đồ là bạn có thể bt đc)
diện tích tam giác AMC là
Samc=\(\dfrac{1}{2}\)\(\times\)AC\(\times\)MH
=\(\dfrac{1}{2}\)\(\times\)4\(\times\)\(\dfrac{8}{5}\)=\(\dfrac{16}{5}\)(đơn vị diện tích)
Câu 2:
Tọa độ điểm A là:
\(\left\{{}\begin{matrix}y=0\\2x+4=0\end{matrix}\right.\Leftrightarrow A\left(-2;0\right)\)
Tọa độ điểm B là:
\(\left\{{}\begin{matrix}x=0\\y=2\cdot0+4=4\end{matrix}\right.\)
=>B(0;4)
Tọa độ điểm C là:
\(\left\{{}\begin{matrix}y=0\\-\dfrac{1}{2}x+1=0\end{matrix}\right.\Leftrightarrow C\left(2;0\right)\)
Tọa độ điểm D là:
\(\left\{{}\begin{matrix}x=0\\y=\dfrac{-1}{2}\cdot0+1=1\end{matrix}\right.\Leftrightarrow D\left(0;1\right)\)
Tọa độ điểm M là:
\(\left\{{}\begin{matrix}2x+4=-\dfrac{1}{2}x+1\\y=2x+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1,2\\y=1,6\end{matrix}\right.\)
M(-1,2;1,6); A(-2;0); B(0,4); C(2;0); D(0;1)
\(\overrightarrow{MA}=\left(-0.8;-1.6\right)\)
\(\overrightarrow{MC}=\left(3.2;-1.6\right)\)
Vì \(\overrightarrow{MA}\cdot\overrightarrow{MC}=0\)
nên ΔMAC vuông tại M
b: \(MA=\sqrt{\left(-0.8\right)^2+\left(-1.6\right)^2}=\dfrac{4}{5}\sqrt{5}\)
\(MC=\sqrt{3.2^2+1.6^2}=\dfrac{8}{5}\sqrt{5}\)
\(S_{MAC}=\dfrac{4}{5}\sqrt{5}\cdot\dfrac{8}{5}\sqrt{5}:2=3.2\)
a:
b: Tọa độ A là:
\(\left\{{}\begin{matrix}y=0\\2x+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\2x=-4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-2\\y=0\end{matrix}\right.\)
Tọa độ B là:
\(\left\{{}\begin{matrix}x=0\\y=2x+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=2\cdot0+4=4\end{matrix}\right.\)
Tọa độ C là:
\(\left\{{}\begin{matrix}y=0\\-\dfrac{1}{2}x+1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=0\\-\dfrac{1}{2}x=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)
Tọa độ M là:
\(\left\{{}\begin{matrix}2x+4=-\dfrac{1}{2}x+1\\y=2x+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{2}x=-3\\y=2x+4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-3:\dfrac{5}{2}=-3\cdot\dfrac{2}{5}=-\dfrac{6}{5}\\y=2\cdot\dfrac{-6}{5}+4=\dfrac{-12}{5}+4=\dfrac{8}{5}\end{matrix}\right.\)
A(-2;0); C(2;0); M(-1,2;1,6)
\(AC=\sqrt{\left(2+2\right)^2+\left(0-0\right)^2}=\sqrt{4^2}=4\)
\(AM=\sqrt{\left(-1,2+2\right)^2+\left(1,6-0\right)^2}=\dfrac{4\sqrt{5}}{5}\)
\(CM=\sqrt{\left(-1,2-2\right)^2+1,6^2}=\dfrac{8\sqrt{5}}{5}\)
Vì \(MA^2+MC^2=AC^2\)
nên ΔMAC vuông tại M
c: Vì ΔMAC vuông tại M
nên \(S_{MAC}=\dfrac{1}{2}\cdot MA\cdot MC=\dfrac{1}{2}\cdot\dfrac{4\sqrt{5}}{5}\cdot\dfrac{8\sqrt{5}}{5}=\dfrac{2\cdot8}{5}=\dfrac{16}{5}\)