chứng minh là PS tối giản
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ƯCLN của n và 2n+1
Ta có: n chia hết cho d
2n+1 chia hết cho d
=>2n chia hết cho d
2n+1 chia hết cho d
Ta có: (2n+1)-2n chia hết cho d
=>1 chia hết cho d
=>d=1
=> ƯCLN của n và 2n+1 là 1
Vậy phân số \(\frac{n}{2n+1}\) là phân số tối giản
Gọi d là ƯCLN của n và 2n+1
Ta có: n chia hết cho d
2n+1 chia hết cho d
=>2n chia hết cho d
2n+1 chia hết cho d
Ta có: (2n+1)-2n chia hết cho d
=>1 chia hết cho d
=>d=1
=> ƯCLN của n và 2n+1 là 1
Vậy phân số n/2n+1 là phân số tối giản
Gọi ƯC( 4n+1; 6n+1 ) = d
⇒ 4n+1 ⋮ d ⇒ 12n+3 ⋮ d
⇒ 6n+1 ⋮ d ⇒ 12n+2 ⋮ d
⇒ [ ( 12n+3 ) - ( 12n+2 ) ] ⋮ d
⇒ 1 ⋮ d ⇒ d = + 1
Vì ƯC( 4n+1; 6n+1 ) = + 1 nên \(\frac{4n+1}{6n+1}\) là p/s tối giản
gọi ƯCLN (2n+3;4n+8) là d
=> 2n+3 chia het cho d ; 4n+8 chia hết cho d
=>2(2n+3) chia hết cho d
hay 4n+6 chia hết cho d
=>(4n+8)-(4n+6) chia hết cho d
2 chia hết cho d
=> d thuộc {1;2}
*) xét d=2 thì 2n+3 chia hết cho 2
mà 2n chia hết cho 2 nhưng 3 không chia hết cho 2
=>d khác 2
=> d =1
vậy phân số 2n+3/4n+8 là phân số tối giản với mọi n thuôc N
gọi d là UCLN(2n+3;4n+8)
ta có:
4n+8-2(2n+3) chia hết d
=>4n+8-4n+3 chia hết cho d
=>2 chia hết cho d
=>d thuộc {1,2}
mà ps trên tối giản khi d=1
Gọi UCLN(n+1;2n+3) = d, ta có:
n+1 chia hết cho d
=> 2n+2 chia hết cho d
2n + 3 chia hết cho d
=> (2n+3)-(2n+2) chia hết cho d
=> 2n + 3 - 2n - 2 chia hết cho d
(2n-2n)+(3-2) chia hết cho d
1 chia hết cho d
=> d thuốc Ư(1) ={1;-1}
=> \(\frac{n+1}{2n+3}\) là phân số tối giản
Chúc bạn học tốt!
Vì ps n+1 / 2n + 3 là ps tối giản nên n +1 và 2n +3 là 2 số nguyên tố cùng nhau
Gọi d là ƯC của n +1 và 2n + 3
Ta có : (2n +3 ) - ( 2(n+1) ) chia hết cho d
Hay : (2n +3 ) - ( 2n +2 ) chia hết cho d
=> 2n +3 - 2n - 2 chia hết cho d
=> 1 chia hết cho d => d ϵ Ư ( 1 ) = + 1
Vậy n + 1 / 2n + 3 là phân số tối giản
Giả sử 7n+10 và 5n+7 đều chia hết cho d
<=> 5(7n+10) và 7(5n+7) đều chia hết cho d
<=> 35n+50 và 35n+49 đều chia hết cho d
=> (35n+50) - (35n+49) chia hết cho d
35n+50-35n-49 chia hết cho d
<=> 1 chia hết cho d
=> d=1
Vậy \(\frac{7n+10}{5n+7}\)là phân số tối giản
Trần Minh Anh
em tham khảo bài làm của bạn Bảo Bình ; bạn ấy trình bày rất rõ ràng ; dễ hiểu
https://olm.vn/hoi-dap/detail/56495853286.html
em chịu khó đánh link này lên google nhé
gọi UCLN(a,a+b)=d
Ta có a chia hết cho d
a+b chia hết cho d
=>(a+b)-a chia hết cho d
=>b chia hết cho d
mà a chia hết cho d
=> d E UC(a,b) mà UCLN(a,b)=1 vì a/b tối giản
=>d =1
Vậy a/a+b tối giản
\(\frac{3n}{3n+1}\).
Gọi ƯCLN ( 3n ; 3n + 1 ) là d .
\(\Rightarrow\)3n ⋮ d
3n + 1 ⋮ d
\(\Rightarrow\)3n + 1 - 3n ⋮ d
\(\Rightarrow\) 1 ⋮ d
\(\Rightarrow\) d = 1 .
\(\Rightarrow\) 3n và 3n + 1 là hai số nguyên tố cùng nhau .
Vậy \(\frac{3n}{3n+1}\) là phân số tối giản .
:)
Gọi \(ƯCLN\left(3n;3n+1\right)\) là \(d\)
\(\Rightarrow\)\(3n⋮d\) và \(\left(3n+1\right)⋮d\)
\(\Rightarrow\)\(\left(3n-3n-1\right)⋮d\)
\(\Rightarrow\)\(\left(-1\right)⋮d\)
\(\Rightarrow\)\(d\inƯ\left(-1\right)\)
Mà \(Ư\left(-1\right)=\left\{1;-1\right\}\)
\(\Rightarrow\)\(ƯCLN\left(3n;3n+1\right)=\left\{1;-1\right\}\)
Vậy \(\frac{3n}{3n+1}\) là phân số tối giản
Cách chứng minh hay như thế nào bạn nhỉ ?
cách chứng minh nha