tìm nghiệm nguyên của phương trình : \(8x^2+23y^2+16x-44y+16xy-1180=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Coi phương trình đã cho là phương trình bậc hai a ẩn x, y là tham số. Dùng điều kiện có nghiệm cuả phương trình để giải
pt <=> \(16x^2+32xy+46y^2+32x-88y=2360\)
<=> \(\left(4x+4y+4\right)^2+30y^2-120y+120=2496\)
<=> \(\left(4x+4y+4\right)^2+30\left(y^2-4y+4\right)=2496\)
<=> \(8\left(x+y+1\right)^2+15\left(y-2\right)^2=2496\)
Có: \(15\left(y-2\right)^2\)là 15 lần của 1 SCP
=> \(0\le\left(y-2\right)^2\le\frac{2496}{15}\)
Mà \(\left(y-2\right)^2\)là 1 SCP
=> \(\left(y-2\right)^2=0^2;1^2;...;12^2\)
Đến đây bạn xét từng trường hợp là ra rùi !!!!!!
anh ơi, vậy là sai đề hả anh, chứ đề kêu chứng minh phương trình vô nghiệm mà em thấy anh ghi x=2
Đáp án D
P T ⇔ π 4 3 x − 9 x 2 − 16 x − 80 = k π ⇔ 3 x − 9 x 2 − 16 x − 80 = 4 k ⇔ 9 x 2 − 16 x − 80 = 3 x − 4 k ⇔ 3 x ≥ 4 k 9 x 2 − 16 x − 80 = 9 x 2 − 24 k x + 16 k 2
Xét 9 x = 18 k 2 + 90 3 k − 2 = 2 9 k 2 − 4 + 98 3 k − 2 = 2 3 k + 2 + 98 3 k − 2
D o x ∈ ℕ * ⇒ 3 k − 2 = 1 ; 2 ; 7 ; 14 ; 49 ; 98 → k ∈ ℤ k = 1 ⇒ x = 12 k = 3 ⇒ x = 4 k = 17 ⇒ x = 12
Chỉ có 2 nghiệm k ; x = 1 ; 12 ; 3 ; 4 thỏa mãn 3 x ≥ 4 k
Điều kiện 9 x 2 - 16 x - 80 ≥ 0 ⇔ x ≥ 4
Phương trình đã cho tương đương với
π 4 3 x - 9 x 2 - 16 x - 80 = k π k ∈ ℤ ⇔ 3 x - 9 x 2 - 16 x - 80 = 4 k ⇔ 9 x 2 - 16 x - 80 = 3 x - 4 k ⇔ x ≥ 4 k 3 9 x 2 - 16 x - 80 = 3 x - 4 k 2 ⇔ x ≥ 4 k 3 x = 2 k 2 + 10 3 k - 2
Yêu cầu bài toán tương đương với
2 k 2 + 10 3 k - 2 ≥ 4 k 3 x = 2 k 2 + 10 3 k - 2 ≥ 4 2 k 2 + 10 3 k - 2 ∈ ℤ
Ta có
2 k 2 + 10 3 k - 2 ≥ 4 k 3 x = 2 k 2 + 10 3 k - 2 ≥ 4 ⇔ - 6 k 2 + 8 k + 30 3 k - 2 ≥ 0 2 k 2 - 12 k + 18 3 k - 2 ≥ 0 ⇔ 2 3 < k ≤ 3
Vì k ∈ ℤ nên k ∈ 1 ; 2 ; 3
Với k = 1 suy ra 2 k 2 + 10 3 k - 2 = 12 ∈ Z
Với k = 2 suy ra 2 k 2 + 10 3 k - 2 = 9 2 ∉ 9 2
Với k = 3 suy ra 2 k 2 + 10 3 k - 2 = 4 ∈ Z
Kết hợp với điều kiện ta suy ra x = 4; x = 12
Vậy có 2 giá trị nguyên dương cần tìm
Đáp án C