Cho tam giác ABC nhọn nội tiếp (O). Đường cao AH cắt đường tròn tại I, Gọi AD là đường kính của (O).Tia phân giác góc BAC cắt đường tròn tại M. c/m
a) OM vuông góc BC
b) AM là tia phân giác của IAD
c) ID//BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: AM là phân giác của góc BAC
=>BM=CM
mà OB=OC
nên OM là trung trực của BC
=>OM vuông góc BC
b: Xét ΔHBA vuông tại H và ΔCDA vuông tại C có
góc HBA=góc CDA
=>ΔHBA đồng dạng với ΔCDA
=>góc BAH=góc DAC
=>góc IAM=góc DAM
=>AM là phân giác của góc IAD
c: AM là phân giác của góc IAD
nên sđ cung IM=sđ cung MD
=>IM=MD
=>OM là trung trực của ID
=>OM vuông góc ID
=>ID//BC
Từng bài 1 thôi bạn!
vẽ trên đt thông cảm!
Do đường tròn ngoại tiếp tam giác ABC có tâm là O
Ta có bổ đề: \(OM=AN=NH=\frac{1}{2}AH\)(tự chứng minh)
Vì \(\widehat{BAH}=\widehat{OAC}\)(cùng phụ với \(\widehat{ABC}\))
Mà AK là phân giác của \(\widehat{BAC}\)
=> AK là phân giác
\(\widehat{HAO}\Rightarrow\widehat{NAK}=\widehat{KAO}\)
Theo bổ đề trên ta có tứ giác ANMO là hình bình hành
=> HK//AO
=> \(\widehat{AKN}=\widehat{KAO}=\widehat{NAK}\left(cmt\right)\)
Hay tam giác NAK cân tại N mà N là trung điểm AH
=> AN=NH=NK
=> \(\Delta AHK\)vuông tại K
a: Xét tứ giác MNBD có
\(\widehat{BDM}+\widehat{BNM}=90^0+90^0=180^0\)
=>MNBD là tứ giác nội tiếp
=>\(\widehat{NBD}+\widehat{NMD}=180^0\)
mà \(\widehat{NBD}+\widehat{ABC}=180^0\)(hai góc kề bù)
nên \(\widehat{NMD}=\widehat{ABC}\left(1\right)\)
Xét (O) có
\(\widehat{ABC}\) là góc nội tiếp chắn cung AC
\(\widehat{AMC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{ABC}=\widehat{AMC}\left(2\right)\)
Từ (1) và (2) suy ra \(\widehat{NMD}=\widehat{AMC}\)
=>\(\widehat{NMA}=\widehat{CMA}\)
=>MA là phân giác của góc NMC
b: Ta có: NBDM là tứ giác nội tiếp
=>\(\widehat{DBM}=\widehat{DNM}\)
=>\(\widehat{MBC}=\widehat{ENM}\left(3\right)\)
Xét (O) có
\(\widehat{MBC}\) là góc nội tiếp chắn cung MC
\(\widehat{MAC}\) là góc nội tiếp chắn cung MC
Do đó: \(\widehat{MBC}=\widehat{MAC}\left(4\right)\)
Từ (3) và (4) suy ra \(\widehat{ENM}=\widehat{MAC}\)
=>\(\widehat{ENM}=\widehat{EAM}\)
=>ANME là tứ giác nội tiếp
=>\(\widehat{AEM}+\widehat{ANM}=180^0\)
=>\(\widehat{AEM}=90^0\)
=>ME\(\perp\)AC
a: AE là phân giác của góc BAC
=>EB=EC
mà OB=OC
nên OE là trung trực của BC
=>OE vuông góc BC
=>OE//AH
b: Điểm M ở đâu vậy bạn?
a: Xét (O) có
\(\widehat{BAM}\) là góc nội tiếp chắn cung BM
\(\widehat{CAM}\) là góc nội tiếp chắn cung CM
\(\widehat{BAM}=\widehat{CAM}\)(AM là phân giác của góc BAC)
Do đó: \(sđ\stackrel\frown{BM}=sđ\stackrel\frown{CM}\)
=>MB=MC
=>M nằm trên đường trung trực của BC(1)
OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OM là đường trung trực của BC
=>OM\(\perp\)BC
b: Xét (O) có
ΔACD nội tiếp
AD là đường kính
Do đó: ΔACD vuông tại C
Xét (O) có
\(\widehat{ADC}\) là góc nội tiếp chắn cung AC
\(\widehat{ABC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{ADC}=\widehat{ABC}\)
Xét ΔACD vuông tại C và ΔAHB vuông tại H có
\(\widehat{ADC}=\widehat{ABH}\)
Do đó: ΔACD đồng dạng với ΔAHB
=>\(\widehat{CAD}=\widehat{HAB}\)
\(\widehat{BAH}+\widehat{HAM}=\widehat{BAM}\)
\(\widehat{CAD}+\widehat{MAD}=\widehat{CAD}\)
mà \(\widehat{BAH}=\widehat{CAD}\) và \(\widehat{BAM}=\widehat{CAD}\)
nên \(\widehat{HAM}=\widehat{MAD}\)
=>\(\widehat{IAM}=\widehat{DAM}\)
=>AM là phân giác của góc IAD
c: Xét (O) có
\(\widehat{IAM}\) là góc nội tiếp chắn cung IM
\(\widehat{DAM}\) là góc nội tiếp chắn cung DM
\(\widehat{IAM}=\widehat{DAM}\)
Do đó: \(sđ\stackrel\frown{IM}=sđ\stackrel\frown{DM}\)
=>IM=DM
=>M nằm trên đường trung trực của DI(3)
OI=OD
=>O nằm trên đường trung trực của DI(4)
Từ (3) và (4) suy ra OM là đường trung trực của DI
=>OM\(\perp\)DI
mà OM\(\perp\)BC
nên DI//BC