Chứng minh rằng có vô số số nguyên tố có dạng 4k +3.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử số các số nguyên tố dạng 4k + 3 là hữu hạn.
Gọi đó là p1, p2, ..., pk.
Xét A = 4*p1*p2*...*pk - 1
A có dạng 4k + 3, vậy theo bổ đề A có ít nhất 1 ước nguyên tố dạng 4k + 3.
Dễ thấy là A không chia hết cho p1, p2, ..., pk, tức không chia hết cho bất cứ số nguyên tố nào có dạng 4k + 3, mâu thuẫn.
Vậy có vô hạn số nguyên tố dạng 4k + 3
**** nhe
Số nguyên tố chia 4 sẽ dư 1 hoặc 3. Ta đã chứng minh được có vô số số nguyên tố. Mà số nguyên tố cũng ko thể tồn tại tất cả ở dạng 4k+3 được. Do đó cũng có vô số số nguyên tố tồng tại ở dạng 4k+1
Mỗi số tự nhiên n khi chia cho 4 có thể có 1 trong các số dư: 0; 1; 2; 3. Do đó mọi số tự nhiên n đều có thể viết được dưới 1 trong 4 dạng: 4k, 4k + 1, 4k + 2, 4k + 3
Với k N*.
- Nếu n = 4k thi n là hợp số.
- Nếu n = 4k + 2 thi n là hợp số.
Vậy mọi số nguyên tố lớn hơn 2 đều có dạng 4k + 1 hoặc 4k +3. Hay mọi số nguyên tố lớn hơn 2 đều có dạng 4n + 1 hoặc 4n +3 với n N*.
Gỉa sử a là số nguyên nào đó mà a^2+1 có ước nguyên tố p có dạng 4k+3
=> a^2+1 chia hết cho p => a^4k+2 +1 chia hết cho p (1)
mặt khác theo định lý nhỏ của Fermat ta có a^p-1 -1 chia hết cho p hay a^ak+2 -1 chia hết cho p (2) Từ (1),(2) => 2 chia hết cho p mà số nguyên tố chia hết cho 2 là 2=> p=2. Mâu thuẫn với giả thiết p có dạng 4k+3
=> với mọi số nguyên a thuộc Z không có ướ nguyên tố dạng 4k+3