Cho ΔABC có 3 góc nhọn. Đường tròn (O), đường kính BC cắt AB, AC lần lượt tại M,N; BN cắt MC tại H
a) CM: AH vuông góc với BC tại K
b) CM: 4 điểm A, H, M,N cùng thuộc 1 đường tròn tâm I
c. CM: IM, IN là tiếp tuyến của ( O)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
ΔBMC nội tiếp
BC là đường kính
Do đo: ΔBMC vuông tại M
=>góc BMC=90 độ
b: Xét (O) có
ΔBNC nội tiếp
BC là đường kính
Do đó: ΔBNC vuông tại N
Xét tứ giac AMHN có
góc AMH+góc ANH=180 độ
nên AMHN là tứ giác nội tiếp
=>I là trung điểm của AH
Xét (O) có
ΔBMC nội tiếp
BC là đường kính
Do đó: ΔBMC vuông tại M
Xét (O) có
ΔBNC nội tiếp
BC là đường kính
Do đo: ΔBNC vuông tại N
Xet ΔABC có
BN,CM là các đường cao
BN cắt CM tại H
Do đó; H là trực tâm
=>AH vuông góc với BC
a: Xét (O) có
ΔBDC nội tiếp
BC là đường kính
Do đó: ΔBDC vuông tại D
=>CD\(\perp\)AB tại D
Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó;ΔBEC vuông tại E
=>BE\(\perp\)AC tại E
Xét ΔABC có
BE,CD là các đường cao
BE cắt CD tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC tại F
Xét tứ giác HECF có \(\widehat{HEC}+\widehat{HFC}=90^0+90^0=180^0\)
nên HECF là tứ giác nội tiếp
=>\(\widehat{HEF}=\widehat{HCF}\)
xét tam giác MDC và tam giác MBA có
góc M chung
góc MCD = góc MAB (chắn BD)
=> đồng dạng => MD.MA= MB.MC
xét tứ giác AEHF có
góc E+F =180 mà 2 góc ở vị trí đối => nội tiếp
=> góc FEA = góc HAF chắn HF
mà AHF = BCF ( 2 góc phụ nhau )
=> góc BCF = góc AEF
=> tứ giác BEFC nội tiếp
=> ME.MF= MB.MC
=> ME.MF = MD.MA
=> tứ giác AEFD nội tiếp
mà tứ giác AEHF nội tiếp
= > 5 điểm A,E,F,H,D cùng thuộc 1 đường tròn
=> góc ADH = 90
xét (o) có ADK = 90
=> D,H,K thẳng hàng (đpcm )
a: Xét (O) có
ΔBMC nội tiếp
BC là đường kính
Do đó; ΔBMC vuông tại M
=>CM\(\perp\)MB tại M
=>CM\(\perp\)AB tại M
Xét (O) có
ΔBNC nội tiếp
BC là đường kính
Do đó;ΔBNC vuông tại N
=>BN\(\perp\)NC tại N
=>BN\(\perp\)AB tại N
Xét ΔABC có
BN,CM là đường cao
BN cắt CM tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC tại K
b: Xét tứ giác AMHN có
\(\widehat{AMH}+\widehat{ANH}=90^0+90^0=180^0\)
=>AMHN là tứ giác nội tiếp đường tròn đường kính AH
=>A,M,H,N cùng thuộc đường tròn đường kính AH
tâm I là trung điểm của AH
c: IM=IH
=>ΔIMH cân tại I
=>\(\widehat{IMH}=\widehat{IHM}\)
mà \(\widehat{IHM}=\widehat{KHC}\)(hai góc đối đỉnh)
và \(\widehat{KHC}=\widehat{MBC}\left(=90^0-\widehat{MCB}\right)\)
nên \(\widehat{IMH}=\widehat{MBC}\)
OM=OC
=>ΔOMC cân tại O
=>\(\widehat{OMC}=\widehat{OCM}\)
=>\(\widehat{OMC}=\widehat{MCB}\)
\(\widehat{IMO}=\widehat{IMH}+\widehat{OMH}\)
\(=\widehat{MCB}+\widehat{MBC}=90^0\)
=>IM là tiếp tuyến của (O)
Xét ΔIMO và ΔINO có
IM=IN
MO=NO
IO chung
Do đó: ΔIMO=ΔINO
=>\(\widehat{IMO}=\widehat{INO}=90^0\)
=>IN là tiếp tuyến của (O)