K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2023

a: Xét (O) có

ΔBDC nội tiếp

BC là đường kính

Do đó: ΔDCB vuông tại D

=>CD\(\perp\)DB tại D và \(\widehat{CDB}=90^0\)

=>CD\(\perp\)AB tại D

Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

=>\(\widehat{BEC}=90^0\)

ΔBEC vuông tại E

=>BE\(\perp\)EB tại E

=>BE\(\perp\)AC tại E

b:

Xét tứ giác ADHE có

\(\widehat{ADH}+\widehat{AEH}=90^0+90^0=180^0\)

=>ADHE là tứ giác nội tiếp đường tròn đường kính AH

=>A,D,H,E cùng thuộc đường tròn đường kính AH

=>I là trung điểm của AH

c: Xét ΔABC có 

BE,CD là đường cao

BE cắt CD tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC tại K

Xét ΔHAC có

I,M lần lượt là trung điểm của HA,HC

=>IM là đường trung bình của ΔHAC

=>IM//AC

Xét ΔBHC có

M,O lần lượt là trung điểm của CH,CB

=>MO là đường trung bình của ΔBHC

=>OM//BH

OM//BH

BH\(\perp\)AC

Do đó: OM\(\perp\)AC

IM//AC

OM\(\perp\)AC

Do đó: IM\(\perp\)OM

d: ID=IH

=>ΔDIH cân tại I

=>\(\widehat{IDH}=\widehat{IHD}\)

mà \(\widehat{IHD}=\widehat{KHC}\)(hai góc đối đỉnh)

và \(\widehat{KHC}=\widehat{CBD}\left(=90^0-\widehat{DCB}\right)\)

nên \(\widehat{IDH}=\widehat{CBD}\)

OD=OC

=>ΔODC cân tại O

=>\(\widehat{ODC}=\widehat{OCD}\)

=>\(\widehat{HDK}=\widehat{DCB}\)

\(\widehat{IDK}=\widehat{IDH}+\widehat{KDH}\)

\(=\widehat{DBC}+\widehat{DCB}=90^0\)

=>ID là tiếp tuyến của (O)(1)

Xét ΔIDO và ΔIEO có

ID=IE

DO=EO

IO chung

Do đó: ΔIDO=ΔIEO

=>\(\widehat{IDO}=\widehat{IEO}=90^0\)

=>IE là tiếp tuyến của (O)(2)

Từ (1),(2) suy ra các tiếp tuyến tại D và E của (O) cắt nhau tại I(ĐPCM)

a: Xét (O) có 

ΔBDC nội tiếp

BC là đường kính

Do đó: ΔBDC vuông tại D

Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

Xét ΔABC có 

BE là đường cao

CF là đường cao

BE cắt CF tại H

Do đó: AH⊥BC

hay AF⊥BC

a: Xét (O) có

ΔBFC nội tiếp

BC là đường kính

Do đó: ΔBFC vuông tại F

Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

Xét ΔABC có

BE,CF là đường cao

BE cắt CF tại H

Do đó: AH vuông góc với BC tại D

b:

Xét tứ giác CDFA có góc CDA=góc CFA=90 độ

nên CDFA là tứ giác nội tiếp

=>góc BFD=góc BCA

Xét tứ giác BFEC có góc BFC=góc BEC=90 độ

nên BFEC là tứ giác nội tiếp

=>góc AFE=góc ACB

Ta có: góc COE=180 độ-2 góc C

góc EFD=180 độ-góc AFE-góc BFD

=180 độ-2 góc C

=>góc COE=góc EFD

=>DOEF là tứ giác nội tiếp

2 tháng 2 2022

bài này mới chữa trên lớp =))

2 tháng 2 2022

r làm đi =)

a: Xét (O) có

ΔBFC nội tiếp

BC là đường kính

Do đó: ΔBFC vuông tại F

Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

Xét ΔABC có

BE,CF là đường cao

BE cắt CF tại H

Do đó: AH vuông góc với BC tại D

b:

Xét tứ giác CDFA có góc CDA=góc CFA=90 độ

nên CDFA là tứ giác nội tiếp

=>góc BFD=góc BCA

Xét tứ giác BFEC có góc BFC=góc BEC=90 độ

nên BFEC là tứ giác nội tiếp

=>góc AFE=góc ACB

Ta có: góc COE=180 độ-2 góc C

góc EFD=180 độ-góc AFE-góc BFD

=180 độ-2 góc C

=>góc COE=góc EFD

=>DOEF là tứ giác nội tiếp

29 tháng 11 2023

Xét (O) có

ΔBDC nội tiếp

BC là đường kính

Do đó: ΔBDC vuông tại D

=>CD\(\perp\)DB tại D

=>CD\(\perp\)AB tại D

Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

=>BE\(\perp\)EC tại E

=>BE\(\perp\)AC tại E

Xét ΔABC có

BE,CD là đường cao

BE cắt CD tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC

25 tháng 5 2016

a) Ta có BFC = 90* ( góc nội tiếp chắn nửa đường tròn )

=> AB vuông góc CF

BEC = 90* ( góc nội tiếp chắn nửa đường tròn )

=> AC vuông góc BE

Tam giác ABC có BE, CF là đường cao ( AB vuông góc CF tại F và AC vuông góc BE tại E )

Mà BE và CF cắt nhau tại H 

Suy ra H là trực tâm tam giác ABC

=> AH vuông góc BC tại D

                 AH . AD = AE . AC

Xét tam giác AHE và ADC

AEH = ADC = 90*

góc A : góc chung

Vậy tam giác AEH đồng dạng tam giác ADC

=> \(\frac{AE}{AD}\)=\(\frac{AH}{AC}\)

=> AE . AC = AD . AH

b) Gợi ý nhé bạn

Ta chứng minh tứ giác BFHD nội tiếp 

=> DFH = HBD 

Mà HBD = CFE ( cùng chắn CE )

Nên DFH = CFE 

=> FC là phân giác góc EFD 

=> DFE = 2 CFE

Mà EOC = 2 CFE ( góc ở tâm và góc nội tiếp cùng chắn cung CE )

Suy ra DFE = EOC

=> Tứ giác EODF nội tiếp ( góc trong = góc đối ngoài )

c) Tứ giác EODF nội tiếp 

=> EDF = EOF 

Mà EOF = 2 ECF ( góc ở tâm và góc nội tiếp cùng chắn EF )

Nên EDF = 2 ECF

Tam giác DFL cân tại D 

=> EDF = 2 FLD = 2 FLE

Mà EDF = 2 ECF (cmt) 

Nên FLE = ECF 

=> Tứ giác EFCL nội tiếp

Mà tam giác CEF nội tiếp (O)

=> L thuộc (O)

Tam giác BLC nội tiếp (O). Có BC là đường kính 

Suy ra tg BLC vuông tại L

=> BLC = 90*

10 tháng 6 2018

A B C O D E H F M K I

a) Ta có: Đường tròn (O) đường kính BC và 2 điểm D;E nằm trên (O)

=> ^BEC=^BDC=900 => BD vuông AC; CE vuông AB

Mà BD gặp CE tại H => H là trực tâm \(\Delta\)ABC

=> AH vuông BC (tại F) hay AF vuông BC (đpcm).

b) Thấy: \(\Delta\)ADH vuông đỉnh D, M là trg điểm AH

=> \(\Delta\)DMA cân đỉnh M => ^MDA=^MAD (1).

Tương tự: \(\Delta\)DOC cân đỉnh O => ^ODC=^OCD (2).

(1) + (2) => ^MAD+^ODC = ^MDA+^ODC = ^MAD+^OCD

Mà 2 góc ^MAD; ^OCD phụ nhau (Do \(\Delta\)AFC vuông đỉnh F)

=> ^MDA+^ODC=900 => ^MDO=900 => MD vuông OD

Lập luận tương tự: ME vuông OE => Tứ giác MEOD có ^MEO=^MDO=900

=> MEOD là tứ giác nội tiếp đường tròn đường kính OM

Xét tứ giác MFOD: ^MFO=^MDO=900 => Tứ giác MFOD nội tiếp đường tròn đường kính MO.

Do đó: 5 điểm M;D;O;E;F cùng thuộc 1 đường tròn đường kính OM (đpcm).

c) Dễ c/m \(\Delta\)EBF ~ \(\Delta\)CDF (c.g.c) => ^EFB=^CFD

=> 90- ^EFB = 900 - ^CFD => ^EFA=^DFA hay ^EFM=^MFD

Xét tứ giác FEMD: Nội tiếp đường tròn => ^EFM=^KDM => ^MFD=^KDM

=> \(\Delta\)MKD ~ \(\Delta\)MDF (g.g) => \(\frac{MD}{MF}=\frac{MK}{MD}\Rightarrow MD^2=MK.MF\)(đpcm).

Gọi I là giao điểm BK và MC.

Dễ thấy: \(\Delta\)FEK ~ FMD (g.g) => \(\frac{FE}{FM}=\frac{FK}{FD}\Rightarrow FE.FD=FM.FK\)

Hoàn toàn c/m được: \(\Delta\)EFB ~ \(\Delta\)CFD (c.g.c) => \(\frac{FE}{FC}=\frac{BF}{FD}\Rightarrow FE.FD=BF.FC\)

Từ đó suy ra: \(FM.FK=BF.FC\)\(\Rightarrow\frac{BF}{FM}=\frac{FK}{FC}\)

\(\Rightarrow\Delta\)BFK ~ \(\Delta\)MFC (c.g.c) => ^FBK=^FMC . Mà ^FMC+^FCM=900

=> ^FBK+^FCM = 900 hay ^FBI+^FCI=900 => \(\Delta\)BIC vuông đỉnh I

=> BK vuông với MC tại điểm I.

Xét \(\Delta\)MBC: BK vuông MC (cmt); MK vuông BC (tại F) => K là trực tâm \(\Delta\)MBC (đpcm).

d) Thấy ngay: EH là phân giác trong của \(\Delta\)FEK. Mà EA vuông EH

=> EA là phân giác ngoài tại đỉnh E của \(\Delta\)FEK

Theo ĐL đường phân giác trg tam giác: \(\frac{KH}{FH}=\frac{AK}{AF}\)

\(\Leftrightarrow1+\frac{KH}{FH}=1+\frac{AK}{AF}\Rightarrow\frac{FK}{FH}=\frac{AK+AF}{AF}\Leftrightarrow\frac{FK}{FH}=\frac{FK+2AK}{AF}\)

\(\Leftrightarrow\frac{FK}{FH}=\frac{FK}{AF}+\frac{2AK}{AF}\Leftrightarrow\frac{FK}{AF}=\frac{FK}{FH}-\frac{2AK}{AF}\)

\(\Leftrightarrow\frac{FK}{AF}+\frac{FK}{FH}=\frac{2FK}{FH}-\frac{2AK}{AF}=2+\frac{2KH}{FH}-2+\frac{2KF}{AF}=\frac{2KH}{FH}+\frac{2KF}{AF}\)

\(\Rightarrow FK\left(\frac{1}{AF}+\frac{1}{FH}\right)=\frac{2KH}{FH}+\frac{2KF}{AF}\)

Đến đây, lại thay: \(\frac{KH}{FH}=\frac{AK}{AF}\)(T/c đg phân giác)

\(\Rightarrow FK\left(\frac{1}{AF}+\frac{1}{FH}\right)=\frac{2\left(AK+KF\right)}{AF}=\frac{2AF}{AF}=2\)

\(\Leftrightarrow\frac{1}{AF}+\frac{1}{FH}=\frac{2}{FK}.\)(đpcm). 

22 tháng 4 2020

d.

Xét△FBH và △FAC có BFH=AFC=90*,FBH=FAC(cùng phụ BCD)

=>△FBH∼ △FAC(g.g) =>FH.FA=FB.FC .

Xét△FBK và △FMC có BFK=MFC=90*, FBK=FMC

=>△FBK ∼ △FMC(g.g)=>FK.FM=FB.FC .

=>FH.FA=FK.FM

Mà FH+FA=FM-MH+FM+MA=2FM

Ta có 2FH.FA=2FK.FM=>2FH.FA=FK(FH+FA)=>KL